Communication Systems Group, Prof. Dr. Burkhard Stiller

MASTER THESIS

University of
Zurich™

7

Design, Prototypical
Implementation and Traffic
Evaluation of MapReduce on
TomP2P

Oliver Zihler
Kloten, Switzerland
Student ID: 06-729-420

Supervisor: Dr. Thomas Bocek, Patrick Poullie
Date of Submission: May 4, 2016

University of Zurich
Department of Informatics (IFI)
BinzmUhlestrasse 14, CH-8050 Zirich, Switzerland —

Master Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

This master thesis presents the design and implementation of a prototype for executing
MapReduce jobs on a peer-to-peer system (TomP2P) with high user implementation flex-
ibility and without master-slave architecture. Instead of map and reduce functions, users
define a number of tasks that are chained together for as many steps as needed until a final
result is obtained. The prototype is completely decentralised: every node contains the
same code and can start MapReduce job executions without any central entity required
to assign work. In cases of node crashes, fault tolerance measures allow other nodes to re-
sume processing of failed tasks without additional coordination mechanisms needed. Data
storage is provided as a customised distributed hash table, and communication is limited
to one type of broadcast messages to inform nodes about executable tasks. The design is
evaluated for produced traffic, where a word count solution is implemented and distributed
to 3 - 6 nodes. The analysis covers both single job executions run from one machine as
well as two jobs submitted simultaneously from two nodes. The initial evaluation shows
constant average traffic per node with certain user-controllable deviations.

1

Zusammenfassung

Diese Masterarbeit prasentiert das Design und die Implementierung eines Prototypen zur
Ausfiihrung von MapReduce Jobs auf einem Peer-to-Peer System (TomP2P) mit hoher
Implementierungsflexibilitét fiir Nutzer und ohne Master-Slave Architektur. Statt Map-
und Reducefunktionen definieren Nutzer eine Anzahl Tasks, welche dann zu beliebig vie-
len Schritten verkettet werden konnen, um ein gewiinschtes Resultat zu erreichen. Der
Prototyp ist komplett dezentralisiert: jeder Knoten fiihrt denselben Code aus und kann
MapReduce Jobausfithrungen starten, ohne eine zentrale Einheit zur Zuweisung von Ar-
beit zu benotigen. Im Falle von Knotenabstiirzen erlauben Stérungstoleranzmassnahmen
anderen Knoten die Bearbeitung fehlgeschlagener Tasks wiederaufzunehmen, ohne zu-
sdtzliche Koordinationsmechanismen zu benétigen. Datenspeicherung wird als angepas-
ste verteilte Hashtabelle angeboten und Kommunikation ist limitiert auf einen Typen
von Broadcastmitteilung, um Knoten iiber ausfithrbare Tasks zu informieren. Das De-
sign wurde evaluiert beziiglich produziertem Traffic, wobei eine Losung zum Zéahlen von
Wortern implementiert und auf 3 - 6 Knoten ausgefiihrt wurde. Die erste Analyse deckt
die Bearbeitung von einem einzelnen Job gestartet von einer einzigen Maschine aus ab.
Die zweite Analyse befasst sich mit der gleichzeitigen Ausfithrung zweier Jobs durch 2
Maschinen. Die Evaluierung zeigt konstanten durchschnittlichen Traffic pro Knoten mit
gewissen durch den Nutzer kontrollierbaren Abweichungen.

iii

v

Acknowledgments

I would like to thank everyone that helped me in the creation of this thesis.

First and foremost, I want to thank Thomas Bocek for his constant advices, guidances,
and especially patience during the implementation of this prototype.

Furthermore, I thank Prof. Dr. Burkhard Stiller for the possibility to write this thesis at
the Department of Informatics of the University of Zurich.

Last but not least, I thank my family and friends for their constant support and patience.
Special thanks go to David and Frida for inspiring discussions during lunch breaks and
working hours. Let us continue to bring the hammer to work in the time to come.

vi

Contents

Abstract
Zusammenfassung
Acknowledgments

1 Introduction

1.1 Motivation L
1.2 Description of Work
1.3 Research Questions and Thesis Goals
1.4 Thesis Outline

2 Related Work
2.1 Literature

2.2 Positioning the Prototype oL

3 Background

3.1 MapReduce
3.2 Peer-to-Peer Overlay Networks
3.2.1 Definitions and Flavours
3.2.2 Discovering Content with Distributed Hash Tables
3.23 TomP2P

vil

viii CONTENTS
4 Prototype Design 15
4.1 Design Goals and Challenges 15
4.1.1 High Flexibility for End Users 15

4.1.2 Storing Results o 16

4.1.3 Communication 16

4.1.4 Resilience and Fault Tolerance 17

4.2 Design Overview 17
4.2.1 Task as an Abstraction for Map & Reduce Functions 17

4.2.2 DHT for Storage 18

4.2.3 Broadcasts for Communication 18

4.2.4 Prototype Workflow Overview 18

4.2.5 A Note on Discarded Prototype Designs 19

5 Prototype Implementation 21
5.1 Frameworks and Programming Language 21
5.2 User Extension Points L. 21
521 Task 22

5.2.2 IMapReduceBroadcastReceiver 22

5.3 Helper Classes 23
53.1 Job . .. 23

5.3.2 PeerMapReduce 24

5.3.3 SerializeUtils 25

5.3.4 NumberUtils o 26

5.4 Usage Demonstration: Counting Words 26
5.4.1 StartTasko 26

5.4.2 MapTask 27

54.3 ReduceTask o 27

5.4.4 PrintTask & ShutdownTask 28

CONTENTS

5.4.5 FExampleJobBroadcastReceiver .
5.4.6 Starting a MapReduce job . . .

5.5 Under the Hood

5.5.1 Acquiring and Releasing Items .

5.5.2 Network Latency Effects on Replicated Data

6 Evaluation
6.1 Software and Testing Environment . .
6.1.1 Configuration Issues
6.2 Traffic Analysis for 1 Job Execution . .
6.2.1 Experimental Setup
6.2.2 Results.
6.3 Comparing Traffic of 1 to 2 Jobs
6.3.1 Experimental Setup

6.3.2 Results.

7 Summary and Conclusions

7.1 Research Questions and Thesis Goals Revisited

7.2 Future Work

7.2.1 Encountered Issues and Limitations

7.2.2 Data Clean-Up and Storage . .

7.2.3 Reducing Traffic and Execution Time

7.2.4 Simplified Task Implementation

Abbreviations

List of Figures

List of Tables

A Exemplary Job Submission

1X

28

28

29

29

30

35
35
35
36
36
37
41
41

42

45
45
47
47
48
49

49

55

55

58

61

X CONTENTS

B Initial Experiments 63

C Overall Mean Traffic Per Node 65

Chapter 1

Introduction

1.1 Motivation

MapReduce is a paradigm for analysing big data made popular by Google in the early
2000 [16]. It is inspired by map and reduce primitives of functional languages: a user
defines two procedures, map and reduce, where map takes an input key-value pair and
produces a set of intermediate key-value pairs, which are then passed to the user-defined
reduce function that accepts an intermediate key and its associated values and merges
them to form a possibly smaller set of values. The application of MapReduce has been
shown for a wide range of domains, including machine learning problems, extraction of
properties from web pages, large graph computations, etc.

Several open source adaptations of MapReduce exist, of which a popular example is
Apache Hadoop [10]. Apache Hadoop relies on a centralised master-slave architecture
similar to Google’s implementation [16] that, although being resilient to slave disconnec-
tions, does not handle master crashes or joins and leaves of nodes well in general [20, 27].
It thus best requires a dedicated environment of homogeneous computers for a seamless
operation. However, in many cases, such dedicated hardware may simply be too expen-
sive to obtain. Alternatively, offices frequently provide a vast range of personal notebooks
and desktop computers that could instead be re-purposed to additionally run MapReduce
jobs but lie idle. The recent emergence of so-called desktop grids [13] or private cloud
infrastructures [30] are a clear sign of the pursuit to utilise these resources to capacity.
Unfortunately, unexpected node disconnections are not unlikely in these heterogeneous
environments. Thus, a centralised master-slave architecture may simply not suffice.

An idea to overcome limitations associated with centralised systems is to instead employ
decentralised peer-to-peer (P2P) networks [12], which are commonly used as distributed
shared resource providers (e.g. Box2Box [17]). Participants (peers) offer a part of their
resources, like disk storage or computing power, to provide a service to the entire network
of connected peers. P2P systems are inherently able to handle high rates of node joins and
leaves without corrupting data nor halting running executions. Additionally, key-value
based storage facilities in the form of distributed hash tables (DHTs [14]) often utilised in
P2P systems offer a complete distributed file system deployable on heterogeneous hard-

2 CHAPTER 1. INTRODUCTION

and software. As DHT’s key-value-based lookup and storage concept may directly be
adapted to the also key-value-based MapReduce paradigm, their effective combination is
only a reasonable step in the endeavour of achieving a more fault-tolerant and easy-to-
deploy MapReduce system.

Although there have been several attempts to enable MapReduce on P2P systems (com-
pare Chapter 2), such endeavours often try to either impose MapReduce as described by
Google [16] directly on a P2P overlay network, e.g. by employing a dynamic master-slave
architecture that can handle master failures [20] or by reusing interfaces of existing imple-
mentations (like Apache Hadoop) and abstracting the underlying file system to employ a
P2P network instead [30]. However, the complexity of the designs may restrict extensibil-
ity and future improvements. Furthermore, users are often limited to the implementation
of map and reduce functions only, a circumstance that may restrict the degree of freedom
and choice as every problem needs to be mapped onto these two functions. An abstraction
and simplification of the concept should allow users to focus more on the actual problem
to solve instead.

1.2 Description of Work

The thesis covers the design and implementation of a prototype that enables users to
write MapReduce jobs and distribute them on TomP2P. Evaluation covers the analysis
of network traffic produced for the execution of one MapReduce job and a comparison
of one to two job executions. Furthermore, based on challenges and issues encountered
during both design and evaluation phases, a comprehensive overview is given for future
work and extensions of the prototype.

1.3 Research Questions and Thesis Goals

The thesis explores the following research questions and goals:

e RQ 1 How can a completely decentralised MapReduce environment be implemented
on top of a P2P overlay network with high user flexibility, little coordination and
communication overheads, and a distributed hash table as main storage facility?

As an initial evaluation of the prototype, it is focused on the produced traffic for an
increasing number of connected nodes. Overall traffic per node should not noticeably
increase if more nodes are added, as more network accesses most likely result in longer
execution times. Thus, a first sub research question to explore is:

e RQ 2.1 Can traffic be kept constant for single-job executions if more nodes are
added to the system?

1.4. THESIS OUTLINE 3

Beyond that, traffic should also not differ if two jobs are executed instead of one, where
the file sizes of one job is twice the file size of the two-job execution. Thus, the second
evaluated sub research question is:

e RQ 2.2 Can traffic be kept constant if two jobs are executed at the same time with
the same overall file size to process as an equivalent single job?

1.4 Thesis Outline

Chapter 2 presents related work of MapReduce implementations with a focus on adapta-
tions of the paradigm to P2P systems. Chapter 3 introduces the theoretical background,
methods, and libraries used to design and implement the prototype, which is covered in
Chapter 4 (design) and 5 (implementation). Chapter 6 presents an analysis of traffic pro-
duced between nodes when running MapReduce jobs to investigate the two sub research
questions, and Chapter 7 summarises the work and provides discussion points and con-
clusions based on design, implementation, and evaluation. Furthermore, limitations and
future works to improve the prototype are outlined.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

The next section examines MapReduce implementations found in literature with a special
focus on P2P adaptations to emphasise problems and limitations of existing systems.

2.1 Literature

Besides Apache Hadoop [10] with its centralised master-slave architecture, recently, there
have also been a number of attempts to port MapReduce to a more decentralised setting.
The intention is to more appropriately support private cloud platforms [30], pervasive [29]
and desktop grids [13], and/or mobile environments characterised by heterogeneous de-
vices and a high churn rate. Such endeavours address the problem of Hadoop (and similar
MapReduce implementations) being designed for dedicated hardware and not supporting
dynamic environments with high churn rates [28], as failures may corrupt or even halt
execution.

Apache Hadoop can be seen as a direct adaptation of the MapReduce programming model
presented by Google [16]. Master nodes manage a number of slave nodes, which they assign
tasks to execute. Input files reside in an own distributed file system (Hadoop Distributed
File System HDF'S) and are split into even chunks, which are replicated for fault-tolerance.
Hadoop YARN provides a framework for scheduling and cluster resource management
on which MapReduce is based. The task scheduler implicitly assumes cluster nodes to
be homogeneous and tasks to progress linearly to decide if re-execution is needed (in
homogeneous environments, nodes are assigned similar workloads). This makes Hadoop
less suited for commodity hardware often found in offices, which may vary greatly in
performance and reliability and where node crashes are common.

Lin et al. [18] explore limitations of Hadoop over volatile, non-dedicated resources. The
authors propose the use of a hybrid architecture with multi-dimensional, dynamic repli-
cation. A small set of reliable, dedicated nodes are employed to provide resources to
less reliable nodes (called MOON, Mapreduce On Opportunistic eNvironments), aug-
menting Hadoop’s HDFS that only provides static data replication. They demonstrate
that MOON’s data and task replication design greatly improves the quality of service of

6 CHAPTER 2. RELATED WORK

MapReduce when running on a hybrid resource architecture with many volatile and only
a small set of dedicated nodes.

Marozzo et al. [20] improve the reliability of Hadoop’s master nodes by introducing a
decentralised P2P model (based on JXTA) that manages node churn, master failures and
job recovery. MapReduce is provided through Hadoop. Each node may become a master
or a slave at any given time dynamically, preserving a certain master-to-slave ratio. To
limit job loss in cases of master failures, each master may act as a backup master for a
certain job, only executed if the primary job master fails. Evaluations show better fault-
tolerance levels compared to a centralised implementations and only limited increase in
network overheads.

The PER-MARE initiative [28] proposes scalable techniques to support existing MapRe-
duce applications in the context of loosely coupled networks. The goal is to develop a
MapReduce system for desktop grids and to keep the implementation compatible with
Hadoop’s API. The network layer uses a token-passing P2P system with full data repli-
cation on every node. The authors already hypothesise, though not employ, the use of a
DHT for storage to ensure fault tolerance without relying on full data replication. How-
ever, their first prototype CONFIIT is eventually discarded [26] for the later CloudFIT
implementation (see below) due to several problems that led to an exponential increase
in execution time with increasing data size, which makes it unsuitable for the intended
purpose.

Tran et al. [32] implement MapReduce on a hybrid super-peer Gnutella P2P network.
The intention is to exploit leisure resources with high heterogeneity for the execution of
MapReduce jobs. The system employs a Master-Slave architecture similar to [20] and [10]:
when a peer wants so solve a distributed problem, it sends messages to other peers, which
can accept the request and then form a group of peers. The sender becomes the master
and all other peers its slaves. By additionally providing super peers, the authors manage
heterogeneity and increase scalability of the Gnutella network by limiting the number of
incapable peers in query routing activities. Every peer group maintains a list of backup
slaves to replace failed slaves. Master failures are not discussed in their work and they only
reference [19] (conference paper of [20]). Thus, a certain master-node failure tolerance can
be assumed.

CloudFIT [30, 29], CONFIIT’s successor, uses desktop computers to set up a private
cloud, where MapReduce jobs can be distributed to and executed with the help of several
P2P overlay networks. It abstracts the underlying storage facility to support various
P2P systems. The authors show the performance with both PAST and TomP2P against
Hadoop. The results demonstrate CloudFIT to be able to achieve similar execution speeds
as Hadoop while omitting the need of a dedicated cluster of computers. Tasks are executed
in a random order on each node to avoid every machine executing the same task at the
same time. Data is directly stored within the DHT of the corresponding overlay and
replicated several times to assure a certain degree of fault tolerance. As MapReduce
procedures produce output keys and values, only keys are sent to nodes via broadcast,
whereas values remain in the DHT.

2.2. POSITIONING THE PROTOTYPE

Name Architecture Failure Prevention Implementation
Freedom
Hadoop [10] Centralised master- ziliémplenogzster SIE; r\l;i Map & reduce primi-
P slave, HDFS . ’ tives
re-execution
Hadoop with improved . . .
MOON [18] | HDFS to handle hetero-]?edlcated .nodes with Map & reduce primi-
. little downtime tives
genelty
Marozzo et P2pP for metwork, Backup masters (& | Map & reduce primi-
Hadoop for MapRe- .
al. [20] slaves) tives
duce, master-slave
. Full replication, dy- ..
CONFIIT P2P (token ring), amic node ioins and Map & reduce primi-
[28] Hadoop API pate JOMS Al T tives
leaves
P2P (Super peer
Tran et al. | Gnutella, no DHT, | Backup slaves (& mas- | Map & reduce primi-
[32] data from FTP server), | ters), super peers tives
master-slave
pP2P (Pastry or o -
| Tomeap) DHT o [e | e e v
storage, Hadoop API J v v
Replication factor, .
| P2P (TomP2P), DHT | dynamic joins (and | 3¢0CTic Task (Map, Re-
This thesis . duce, or any other func-
for storage, own API leaves), task resubmis- | . .
sions tionality)

Table 2.1: Summary of important dimensions from reviewed literature.
2.2 Positioning the Prototype

Many of the systems encountered in literature, as summarised in Table 2.1, add improve-
ments to Hadoop to provide better support for node heterogenity and master failures or
node crashes in general. However, in almost all cases, the implementation is kept close
to Hadoop and it is often tried to reuse as much of it as possible (which is definitely a
valid approach due to Hadoops well-maintained API and active development community).
Additionally, in cases of own implementations, the master-slave architecture is often fol-
lowed, too. CloudFIT is the system that most closely resembles the presented design as
it uses also a DHT as storage facility and broadcasts to send keys to connected nodes.
However, the presented implementation is much closer to the underlying P2P system and
does not abstract it as CloudFIT does, and customised DHT functionalities are imple-
mented instead of reusing existing ones. The Hadoop API is not employed in any way,
either. Furthermore, much more implementation freedom is given to the user, which is
not restricted to specifying map and reduce functions only.

CHAPTER 2. RELATED WORK

Chapter 3

Background

This section introduces important theoretical concepts and used libraries to provide a
base for understanding the design and implementation of the prototype.

3.1 MapReduce

MapReduce [16] provides a way of automatic parallelisation and distribution of large-scale
computations suited for datasets to big to fit in memory. Users define map and reduce
functions. A map function takes an input key-value pair on which it conducts user-defined
operations that eventually emit a set of intermediate key-value pairs. All values for each
intermediate key [are grouped together and then passed to the reduce function. The
reduce function uses I and merges the corresponding values according to user-specified
code into a possibly smaller set of values. The resulting keys and values are finally written
to an output file. Simplified, each computation expressed by these functions takes a set
of input key-value pairs and produces a set of output key-value pairs. An exemplary
pseudocode to count words expressed in these two functions is depicted in Listings 3.1
and 3.2.

Listing 3.1: map function Listing 3.2: reduce function
void map(String k1, String vl) { void reduce(String k2, List<int> v2){
// k1: file name, vl: content // k2: word, v2: list of 1s
for (word in v1) { int sum = 0;
emit (word, 1); for (one in v2){
} sum = sum + one;
} }

emit (k2, sum);
}
Map splits the text (v1) of a document specified by its file name (k1) into all corresponding
words and for each word (word), emits its occurrence count (1 for every encounter of the
word). The reduce function then sums up all occurrences (provided as a list or iterator of
Is, v2) of each word (k2) individually, eventually emitting the overall sum of occurrences
(sum) for every word (k2) in the whole dataset. Users can specify associated types as

9

10 CHAPTER 3. BACKGROUND

User
Program

(1) fork “. (1) fork
(1):fork :
2 (2) (2)
« assign N P’ assign -,
map .-’ “..reduce .,
Output
File 0
Split 0
Split 1 (4) local

(3) read write
Split 2

Split 3 (5) remote
Split 4 read
(6) write
Output
File 1
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 3.1: Conceptual execution of a MapReduce program. Adapted from [16].

needed (in the example strings and integers). Only intermediate keys and values need to
be from the same domain as final output keys and values.

The conventional workflow of MapReduce [16] is indicated by Figure 3.1. (1) input files
are partitioned into M splits with a size of around 16 - 64 MB per piece and many copies
of the program are started on a cluster of machines. (2) a master schedules execution
and assigns tasks to workers, which read the content of the input data and pass it as
key-value pairs to the user-defined map function. Intermediate key-value pairs emitted
by the map function are then buffered in memory, periodically written to local disks, and
eventually partitioned into R regions using a partitioning function (4). R usually is the
number of available workers for executing reduce. To evenly distribute these pieces, a
partitioning function like hash(key) mod R can be used. Locations of buffered pairs on
local disk are passed back to the master to forward them to the reduce workers. (5) reduce
workers read buffered data from the local disks of map workers. When all intermediate
data for a partition is read, a reduce worker sorts the intermediate keys to group all same
keys together. Then, it iterates over the data and passes each intermediate key and the
corresponding set of intermediate values to the user-defined reduce function (6). The
output is then appended to the final output file for this reduce partition. Before emitting
the data to the network after the map function finished, local aggregation is commonly
applied (called combiners in Hadoop [10]). Combiners typically execute the same code as
reduce but only locally on the node emitting data. For example, if a word is encountered

3.2. PEER-TO-PEER OVERLAY NETWORKS 11

three times, map without combiner emits <word, 1>, <word, 1>, <word, 1>. Using a
combiner, the emitted data is already reduced to <word, 3> before it is sent over the
network. Although it makes no difference to the succeeding reduce function which result
of the two possibilities it eventually processes, it may drastically reduce the amount of
data sent and consequently, speed up execution. However, not every application allows the
use of combiners. Hadoop, furthermore, aggregates map, reduce, and combiner functions
together with other configuration settings in a job. Jobs can be linked and executed after
another, until a final processing result is achieved.

3.2 Peer-to-Peer Overlay Networks

The following section introduces selected topics and principles of the vast range of peer-
to-peer (P2P) systems and applications important for the presented prototype.

3.2.1 Definitions and Flavours

P2P overlay networks are distributed systems typically without a central server handling
user requests and responds with according resources (as present in client-server architec-
tures [24]). Instead, many hosts (peers) possess desired resources (e.g. files) and handle
user requests to them as well [14]. A P2P network is given if participants share a part of
their own hardware resources (like e.g. processing power or storage capacity) to provide
services and contents that are directly accessible to other peers [24]. Thus, peers are both
resource (service and content) providers and requesters. Nowadays P2P systems are not
easily classified and different authors choose to characterise them in various ways, e.g.
according to their data indexing scheme, their level of decentralisation, or their level of
structure [12]. In an attempt to summarise different concepts, one can distinguish un-
structured P2P, which consist of centralised P2P systems (a central entity is needed to
provide a service in the form of e.g. an index to files), pure P2P systems (without cen-
tral entities, any terminal can be removed without losing functionality), and hybrid P2P
systems (with dynamic central entities called "super” peers). Structured P2P systems, on
the other hand, typically make use of a distributed hash table (DHT). As the presented
design makes use of such a DHT, its purpose and functionality is outlined in the following
in favour of other forms of P2P types.

3.2.2 Discovering Content with Distributed Hash Tables

One of the most important tasks of P2P systems is the efficient lookup and retrieval of
content and /or services. Although systems with a central server may provide O(1) lookup
of a file’s location in a P2P network, they suffer from the problem of being a single point
of failure and possible scalability issues [22]. On the other hand, although being rather
resilient to node crashes, without efficient lookup capabilities, P2P systems may need to
flood queries across the network to find the location of desired content (requiring O(n)

12 CHAPTER 3. BACKGROUND

lookups) as there is no restriction on where files reside. This severely limits scalability,
too. DHTs offer a trade-off between these two extremes. They enforce a certain structure
on the P2P overlay network and provide hash-table-like semantics on internet scales [22]:
keys are hashed using a hash function like SHA-1, and every key is mapped to one or
more values. Typical DHT operations include those present in common hash tables like
put(key, value), get(key): value, etc. Efficient routing protocols reduce lookup complexity
to O(log n) while lowering node state (the routing entries to other nodes) to O(log n)
as well. Although there are some limitations to DHTs (e.g. a high churn rate requires
O(log n) repair operations, keyword searches in DHTs by default may only handle exact-
match lookups, and many queries may not require an exact recall as they are mostly for
well-replicated files and thus, do not justify the overhead of a DHT [14]), they provide a
good balance between node state and communication overhead flooding and centralised
P2P systems can hardly achieve. Popular DHT implementations include Chord [31],
CAN [22], Pastry [23], or Kademlia [21]. As TomP2P employs an XOR-based iterative
routing similar to Kademlia [9] and is used in the implementation of the prototype, its
principal way of functioning will be briefly outlined next.

Kademlia

Kademlia is a P2P algorithm and DHT with XOR-based metric topology [21]. In a system
of n nodes, searches using Kademlia only require O(log n) peers to be contacted. Keys are
160-bit opaque quantities. Every connected node is assigned one of these keys as a unique
ID. Key-value pairs are stored on nodes with IDs "close” to that key. Closeness is defined
as the bitwise Exclusive OR (XOR) distance of two nodes’ IDs (d(x, y) = x @ y, where
x and y are two 160-bit identifiers). Thus, distance is not used in a geographical sense
as "neighbour” nodes may be spread around the world and are only logically considered
close in the overlay network due to their small XOR distance. Kademlia treats nodes as
leafs in a binary tree, with each node’s position determined by the shortest unique prefix
of its ID. In a fully-populated binary tree of 160-bit IDs, the magnitude of the distance
between two IDs is the height of the smallest subtree containing them both. If the binary
tree is not fully populated, the closest leaf to an ID is the leaf whose ID shares the longest
common prefix. For every node, the binary tree is divided into a series of successively
lower subtrees that do not contain the node. Every node knows at least one node in each
of its subtrees if the subtree contains a node. By successfully querying the known node,
contacts are found in lower subtrees until the lookup finally converges to the target node.
Thus, any node can locate any other node using its ID.

3.2.3 TomP2P

TomP2P [9] features XOR-based iterative routing similar to Kademlia and can therefore
be classified as a structured P2P system. Keys and node ID’s are 160-bit quantities, and
key-value pairs are stored on ID’s close to that key. This also means that there are 21%°
different peers possible. Furthermore, values can be stored for the same location key by
distinguishing it using one or more of three additional 160-bit keys: domain-, content-, and
version key. These three keys are optional per default. Domain keys are also used in the

3.2. PEER-TO-PEER OVERLAY NETWORKS 13

implementation of the prototype, which will be outlined in Chapter 5. Moreover, TomP2P
uses Futures to reduce blocking in systems. As each method call will return immediately,
the corresponding Futures need to add a listener that specifies actions conducted once
the procedure completes. The concept of Futures will also be used and extended in the
implementation of the prototype, making it a necessary feature to be familiar with as a
possible user of the system, see explanations found at [9)].

Broadcasting TomP2P provides structured broadcast messaging based on [15]. Of-
ten, broadcasting (sending messages from one to all) is accomplished through flooding:
all nodes send received messages to all other nodes they know. Consequently, many
messages will be received multiple times and duplicates are simply discarded. Although
simple in principle and rather resilient to node failures, such an approach produces a lot
of unnecessary network traffic. However, in structured P2P systems like TomP2P, the
inherent topology of the network can be used for a fast and efficient delivery of broadcast
messages. As nodes can be reached in logarithmically many steps due to the Kademlia
routing scheme, a broadcast message will reach all nodes in logarithmic time. The method
is cost-efficient as there are no duplicate messages. Problems may arise when packets get
lost: not only will single nodes but a complete subtree miss out on a broadcast mes-
sage. Thus, to achieve an acceptable balance between too many duplicates and a possible
loss of a whole subtree that does not receive a broadcast message, a relaxation of the
kademlia-based routing principle can be employed: In every subtree, not only a single
but multiple nodes are selected to be responsible for forwarding a message. Although the
method introduces duplicate messages again (with associated additional network traffic),
it also effectively decreases the probability of skipping a subtree.

14

CHAPTER 3. BACKGROUND

Chapter 4

Prototype Design

4.1 Design Goals and Challenges

This section sheds light on the goals of the prototype and what overall challenges have to
be solved to achieve these goals.

4.1.1 High Flexibility for End Users

An often encountered limitation of current MapReduce systems is that they restrict im-
plementation possibilities for users to map and reduce functions (see Chapter 2). Limiting
users to two functions, although relieving them from overcomplicated implementations,
also limits their freedom of choice on how to solve problems. For example, in Apache
Hadoop, if a problem solution requires the implementation of multiple different functions
executed after another, users need to define multiple MapReduce jobs and chain them
together. However, how these two functions in every job are invoked is entirely hidden by
the system and users can only influence certain parts through own configuration param-
eters. Ultimately, users are completely dependent on the developers of these frameworks
to provide appropriate configuration mechanisms. Conversely, in this prototype, the goal
is to transfer responsibility for the execution from the system back to the users.

Besides actual processing, different environments may also require varying quality as-
surance measures. 1f a MapReduce job is run on a dedicated environment of high-end
computers, one execution may well suffice. On the other hand, an implementation run on
a set of office notebooks may suffer from many crashes and associated data corruptions,
requiring more sophisticated control measures. However the circumstances, users need to
be able to decide for themselves what the needed measures are as they know the environ-
ment, data, problem, and solutions better than any system could guess without becoming
overly complicated.

Regarding opportunities to alter the given system environment, a skilled user should be
able to exploit peculiarities of the underlying P2P network if desired (instead of hiding it

15

16 CHAPTER 4. PROTOTYPE DESIGN

as in e.g. [30]). This allows for implementations system developers may not have thought
of before and thus, possible realisations of more innovative ways to solve data processing
problems.

Lastly, the prototype should work on as many different operating systems and hardware
sets as possible to allow for heterogeneity, unlike e.g. Apache Hadoop that requires best a
Linux environment [2] for deployment and may require non-negligible effort to be adapted
to other operating systems [3].

4.1.2 Storing Results

Where Apache Hadoop relies on an own file system called HDFS [10], the intended pro-
totype in this thesis explores the feasibility of a DHT as storage facility for data emitted
during MapReduce jobs. As both map and reduce functions take key-value pairs as input
and produce key-value pairs as output, this behaviour needs to be abstracted and mapped
onto the DHT directly that also relies on key-value-based storage operations.

An important data storage challenge is to distinguish different output results if multiple
nodes execute on the same dataset. As DHTs in their basic form simply map a key to a
value, users should be provided with facilities to easily distinguish multiple key-value pairs
from different nodes. Consider the word-count example outlined in Chapter 3.1: if a node
simply uses the hash of a word to store the associated counts, every time the same word
is emitted, an already existing count for the same hash would be overwritten. Checking
the DHT beforehand for already stored data is not feasible in a distributed environment
due to slow network access and thus, has to be avoided.

4.1.3 Communication

Communication in MapReduce as outlined in Chapter 3.1 requires central entities (mas-
ters) to assign tasks to workers (slaves). However, the goal is to avoid such an architecture:
every node should work autonomously and be able to execute and finish a whole job on its
own if the complete dataset can be accessed. Generally, every map or reduce procedure
to execute can be seen as an isolated entity. One of two functions is invoked on a set of
input keys and values and produces a set of output keys and values. The output keys and
values of the previous task then become the input keys and values for the succeeding task.
Therefore, nodes only need to be informed about what task to execute and on which data.
They do not need to know which other nodes execute the same task, nor if any other node
failed during execution. Thus, coordination should be as small as to the extent where no
node depends on the completion of other nodes. Consequently, the failure of one node
should not affect the execution of the whole job and allow for other nodes to take up failed
executions. On the other hand, every node executing a certain part of a MapReduce job
should also be able to profit from already finished datasets and not execute on the same
data all over again if it is not required by the user. Conclusively, the prototype’s design
needs to allow nodes to benefit from the execution of other nodes without depending on
them, to only use a limited number of messages to do so to avoid an unnecessary and
complex message handling, and to avoid employing any form of master-slave architecture.

4.2. DESIGN OVERVIEW 17

4.1.4 Resilience and Fault Tolerance

One of the main reasons for implementing MapReduce on top of a P2P system, which was
also one of the main goals pursuit in the analysed literature in Chapter 2, is its inherent
ability to be more resilient to node crashes than centralised systems. This distinguishes
it from implementations like Apache Hadoop, where master failures may cause the whole
system to stop [19]. Instead, in a P2P overlay network and thus, the presented prototype,
it needs to be possible to remove any node without the execution being halted and a joining
node has to be able to immediately start participation without having to be assigned work
by any central entity.

4.2 Design Overview

In the following, the proposed design as a result of aforementioned goals and challenges
is outlined to provide a conceptual overview for understanding the prototype’s way of
functioning. As both the solutions to achieve fault tolerance and avoiding clashes due to
equal key hashes are best explained with the help of the actual implementation, they are
omitted in the upcoming design overview and instead detailed in Chapter 5.

4.2.1 Task as an Abstraction for Map & Reduce Functions

Addressing above outlined challenges requires a maintainable yet simple design. First of
all, an abstraction for both map and reduce functions can already decrease complexity as
there is only one procedure type the system needs to handle. Both functions take input-
and produce output keys and values (see Listings 3.1 and 3.2 of Section 3.1) with the
sole difference that map takes only one value and reduce an iterator of values as input.
However, also an iterator of values can contain only one value, rendering the differences
between map and reduce interfaces redundant. Thus, in this prototype, the two procedures
are summarised to a single function termed task. A user defines an ordered list of tasks
such that task; , 1 is executed after task;. It is entirely up to the user how many tasks are
chained and executed after another until the final result is achieved.

Tasks, moreover, are not restricted to data processing only: responsibilities that are usu-
ally assumed by the system need to be directly implemented by the user. Typical opera-
tions are e.g. aggregating and/or sorting intermediate data emitted by the map function
before passing it to the reduce function. However, if such a behaviour is not required,
it can as well be omitted. An example for a user-defined aggregation task is given in
Chapter 5.4 (ReduceTask). Similarly, local reading of data and final writing of results can
be realised with a task specified according to user needs. For instance, instead of storing
the data in the DHT or writing it to a local file system, the final results could be printed
to the screen or stored in an online database, etc.

18 CHAPTER 4. PROTOTYPE DESIGN

4.2.2 DHT for Storage

The property of MapReduce to take input- and produce output keys and values allows for
an almost direct mapping onto DHT operations. A task gets the input values from the
DHT using an input key, executes the intended calculations on this data, and finally puts
output keys and values back into the DHT. The user is able to define input and output
keys and values as required by the problem to solve. For example, simply emitting every
word (key) and occurrence count (value) as depicted in Listings 3.1 and 3.2 of Section 3.1
may not be the only or most performant way to count words in documents. Once keys
and values are emitted by a task, the underlying P2P system takes care of an appropriate
distribution of the data on all nodes as well as its replication (as defined by the user).
What needs to be communicated eventually is the key(s) produced by the task so that
other connected nodes can retrieve associated data items and execute the next task on
them.

4.2.3 Broadcasts for Communication

Communication between nodes is accomplished through the use of broadcasts as described
in Section 3.2.3. Broadcasts are effectively received by every connected node. Therefore,
they allow for a simple communication and coordination scheme, where every node can
react to a received task execution request. However, the user is ultimately responsible
for sending a broadcast. It can also be decided to omit the emission of a broadcast or to
send multiple different or same broadcasts if the task requires it. Broadcasts are intended
to only be submitted once a task finishes and should contain the produced output DHT
keys such that nodes receiving the broadcast may retrieve the data and the actual task
to be invoked on that data. How a task is transferred to a node is up to the user as
it may either be stored and retrieved to and from the DHT or directly be transferred
within the broadcast message. The latter especially makes sense in the case of small
tasks, whereas for larger tasks, it may be required to only send keys to nodes to retrieve
the corresponding tasks directly. Only invoking broadcasts on finished tasks also reduces
the number of status messages and thus, further lowers complexity.

4.2.4 Prototype Workflow Overview

The basic principle of data storage and retrieval, execution of a task, and communication
with broadcasts is illustrated in Figure 4.1. A task is sent to a participating node using
broadcasts together with a key to find the data in the DHT (1). This allows for every
node in the network to be informed about executable tasks. Once the task and key for the
data are received, a node uses that key to retrieve the data from the DHT (2), starts task
execution on the retrieved data item (3), puts the result data back into the DHT using
a possibly new output key (4), and finishes execution, normally by sending a broadcast
message containing all output keys to produced data items and information about the
next task to execute on that data (5). In summary, the basic task execution relies on
only three operations: DHT put and get to distribute, store and retrieve data items, and
broadcasts to communicate between nodes.

4.2. DESIGN OVERVIEW 19

BROADCAST

NODE
3)

EXECUTE ITASK ON
IDATA

BROADCAST

O Srask |

(2) (4)

GET(IKEY) PUT(OKEY, ODATA)

Figure 4.1: MapReduce job execution abstraction in the presented design.

4.2.5 A Note on Discarded Prototype Designs

After two failed attempts of implementing a working prototype, it was decided to redesign
it from scratch. Initially, a similar design concept as presented in [30] was pursuit, who
implemented their MapReduce engine based on the idea that the underlying P2P net-
work should be replaceable and, consequently, the user should not have to care about
the actual implementation details. However, during implementation of the prototype, it
became more and more apparent that too many unknowns had to be guessed by the sys-
tem to keep it as generic as possible. Furthermore, over-engineering harmed testing and
modification of the prototype severely. Ultimately, problematic assumptions about how
to aggregate data led to a large number of DHT access calls, drastically slowing down the
whole system to an extent, where it was not feasible for the execution of MapReduce jobs
anymore. Therefore, it was discarded eventually in favour of a much simpler implementa-
tion presented here. The new design still bares some commonalities of the initial designs,
like the use of broadcasts for communication, to only communicate finished executions,
and the abstraction of map and reduce functions to only a single task. Overall, the cur-
rent and final implementation is a proof of concept and has thus much improvement and
possible redesign to be done before becoming a viable alternative to other MapReduce
implementations.

20

CHAPTER 4. PROTOTYPE DESIGN

Chapter 5

Prototype Implementation

In the following, the actual realisation and implementation of the concepts presented in
Chapter 4 are outlined. First, an introduction of the classes and interfaces providing
users with tools to define own MapReduce jobs is given. To allow for a better under-
standing of these concepts, a possible (but not the only) implementation of a word count
example is illustrated, which is also used in the evaluation of the system in Chapter 6.
Then, the so-defined job is submitted conceptually to inform the reader about mecha-
nisms and classes invoked internally and how certain concepts mentioned in Chapter 4
are realised. This also includes some notes on encountered interesting challenges and how
these were resolved. As the prototype is under ongoing development, refactoring may
alter the interfaces and implementations to some extent. However, the basic principles
and implementation possibilities for users are intended to remain constant.

5.1 Frameworks and Programming Language

The entire prototype is implemented in Java JDK 8u20 [5]. TomP2P 5.0-Beta8 provides
P2P functionalities [9]. Many internally invoked classes are customised extensions of
TomP2P to allow for adapted DHT operations. Users are not only required to be familiar
with the Java programming language but also with the concepts of TomP2P to implement
own MapReduce jobs. An introduction to TomP2P can be found at [9]. The prototype is
published on https://github.com /ollyblink.

5.2 User Extension Points

There are two extension points users need to implement: Firstly, the abstract class Task,
and secondly, the interface IMapReduceBroadcastReceiver.

21

22 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Task

- previousld: Number640
- currentld: Number640

+ broadcastReceiver(input: NavigableMap<Number640, Data>, pmr: PeerMapReduce): void

Figure 5.1: The Task class - the main extension point for implementing MapReduce jobs

5.2.1 Task

Task (Figure 5.1) is the embodiment of the idea of having only one abstraction for all
procedures to be carried out during a MapReduce job as outlined in Section 4.2. It
provides one method broadcastReceiver() for the user to be extended. The name of
the method implies that a Task is intended to be invoked by the system on receiving a
broadcast. A typical extension of Task is a map or reduce function but also any other
action to be conducted before or after the actual MapReduce job, like e.g. reading, writing,
or sorting data items. Two parameters need to be provided to the broadcastReceiver()
method: a Java NavigableMap containing the user-specified data for this task, and an
instance of PeerMapReduce providing users access to the P2P network. The user-specified
data may be anything that a task needs for execution. In the case of a word count, an
initial, locally executed task may require the file location as an input to read the data
from the user’s file system and distribute it to the DHT, whereas the input to a map
task may be a key to the data stored in the DHT. Additional input can easily be defined
here, like e.g. a dictionary that allows for only counting actual words in a file and no
other tokens. When a task finishes, in many cases, a broadcast needs to be sent out,
such that other connected peers get informed and can start execution of the next Task
in the chain. To do so, users can directly access a TomP2P Peer instance wrapped inside
PeerMapReduce (compare Figure 5.4). Figure 5.1 additionally shows that Task has two
identifiers, previousld and currentld. These two instance variables need to be set by the
user to specify which task comes after which. Especially in the case of the first executed
task, the previousld needs to be null for the system to determine it to be the start of a
job execution (see Figure 5.6 for an example). An ID may simply be a random TomP2P
Number640 key and is only used to distinguish and link tasks. Its usage will be outlined
in Section 5.4.

5.2.2 IMapReduceBroadcastReceiver

Another extension point for the user is IMapReduceBroadcastReceiver as presented in
Figure 5.2, without which a MapReduce job cannot be started. Its intention is to al-
low a user to specify the actions taken when a broadcast is received on a node. This
also includes starting the next task by invoking Task.broadcastReceiver(). The Mes-
sage instance passed as a parameter is the complete broadcast message received, and the
additional PeerMapReduce parameter is provided to be passed to the Task’s broadcas-
tReceiver() method. Allowing users the flexibility to decide how tasks are executed also

5.3. HELPER CLASSES 23

<<Interface>>
IMapReduceBroadcastReceiver

+ receive(message: Message, pmr: PeerMapReduce): void
+id(): String

Figure 5.2: The IMapReduceBroadcastReceiver interface - the actions to be taken when
a broadcast is received on a node.

enables them to intentionally ignore received messages. Therefore, although ideally, all
broadcast messages sent are also received, it does not mean that every message needs
to cause an action on the receiving node. Additionally, Figure 5.2 shows that an id()
method needs to be implemented that defines a subclass-wide ID string to be able to dis-
tinguish one IMapReduceBroadcastReceiver from another. This has to do with the fact
that the transmitted object and class files resulting from Task and IMapReduceBroad-
castReceiver implementations are not the same when received multiple times, although
they contain exactly the same information (this is related to the way in which the JVM
loads classes that may also result in problems with automatically created equals methods.
Details are beyond the scope of this work, although some additional insights are provided
in Section 7.2.1). Thus, when a receiver object is added to a node’s list of user-defined
receivers, it may happen that the same receiver is added multiple times although the
user’s intention was to add it only once. By specifying a subclass-wide 1D, e.g. the class’s
name, the current implementation assures that every node only contains one instance of
the IMapReduceBroadcastReceiver extension.

5.3 Helper Classes

The prototype provides a number of helper classes and interfaces to facilitate users the
implementation of MapReduce jobs. Some of these classes are required while others offer
optional facilities to be used during implementation of Task or IMapReduceBroadcastRe-
ceiver extensions.

5.3.1 Job

All user-defined Tasks and IMapReduceBroadcastReceivers need to be aggregated in a
Job as shown in Figure 5.3 to be able to start a MapReduce processing. The start()
method takes the same input parameters as the Task’s broadcastReceiver() method. On
invocation, it retrieves the first Task (whose previousld is null, see Figure 5.6) and passes
the input to it. Therefore, the first Task is locally executed on the node starting the Job.
A typical local Task is reading data from the file system and storing it in the DHT. A
broadcast call will then initiate the first non-local procedure, where other peers connected
to the network start execution. As peers on other nodes do not know of the actual
Task and IMapReduceBroadcastReceivers implementations, they need to be serialised

24 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Job Task

+ addTask(task: Task): void
+ addBroadcastReceiver(r: IMapReduceBroadcastReceiver)
+ findStartTask(): Task

) o
+ findTask(taskld: Number640): Task

+ start(input: NavigableMap<Number640, Data>, pmr:PeerMapReduce): void .
(inp & P P P) IMapReduceBroadcastReceiver

+ serialize(): JobTransferObject
+ deserialize(): Job

Figure 5.3: The Job class - aggregation and starting point of any MapReduce execution.

and transferred to and then deserialised and instantiated again on these nodes. The
corresponding methods provided by Job are serialize() and deserialize(). Not only do
these methods serialise all the instantiated Java objects and internally specified declared
and anonymous classes but also all their corresponding class files. Job.serialize() returns
a JobTransferObject containing the complete serialised job, which may be put into the
DHT or sent via broadcast directly, however the user intends to execute a job.

5.3.2 PeerMapReduce

PeerMapReduce (Figure 5.4) is the main network interaction class that provides users
with the possibilities to connect and disconnect to and from the overlay, put and get
data to and from the DHT, and submit broadcasts to all nodes, including itself. It
wraps an instance of TomP2P’s Peer class that can be configured beforehand according
to user requirements. A certain resemblance to TomP2P’s PeerDHT, which also provides
DHT functionalities to the user, is intended. The peer has to be directly accessed to
emit broadcasts to other connected nodes. The put() and get() methods offer various
parameters. First of all, two Number160 keys, location- and domainKey, allow users to
distinguish storage keys to avoid clashes, which is demonstrated with examples in more
detail in Section 5.4. Besides the actual value to store in the DHT, the put() method
provides a nrOfEzecutions parameter. It offers users the possibility to specify how many
times a value can be retrieved for execution by internally restricting the number of accesses
to that data item. As the system does not know about other nodes but instead relies on

PeerMapReduce

- peer: net.tomp2p.p2p.Peer

+ put(locationKey: Number160, domainKey: Number160, value: Object, nrOfExecutions: int): MapReducePutBuilder
+ get(locationKey: Number160, domainKey: Number160, broadcastinput: NavigableMap<Number640, Data>): MapReduceGetBuilder

Figure 5.4: PeerMapReduce - a user’s connection to the overlay network. It provides
DHT-like put() and get() methods as well as direct access to an instance of TomP2P’s
Peer class to allow for the establishment of an overlay network and the submission of
broadcast messages.

5.3. HELPER CLASSES 25

SerializeUtils

+ serializeClassFile(Class<?> classToSerialize): Map<String, byte[]>
+ deserializeClassFile(classToDefine: Map<String, byte[1>): Map<String, Class<?>>

+ serializeJavaObject(object: Object): byte[]
+ deserializeJavaObject(objectData: byte[], classes: Map<String, Class<?>>): Object

Figure 5.5: SerializeUtils provides methods to serialise and deserialise both class files and
Java objects.

broadcasts that all peers receive and immediately process, also all data items may be
accessed in parallel from all nodes. Consequently, this could result in a lot of unnecessary
network traffic and waste of resources if all nodes execute all tasks at the same time,
although only a restricted number of executions of every data item is required. Therefore,
even though all nodes may try to access a data item at the same time, only some will
actually receive it while others will not. However, the nodes that did not receive it may
instead be granted access to other data items, effectively executing all tasks eventually.
The get() method provides, besides location- and domainKeys to distinguish the actual
data item to retrieve, an additional broadcastinput parameter. The parameter’s type
corresponds to Task.broadcastReceiver()’s input parameter. On every invocation of get(),
a Task is intended to pass the input received via broadcast to the method. The parameter
is used for an internal mechanism of fault tolerance explained in more detail in Section 5.5.
Internally, if the node fails before emitting a broadcast (e.g. it goes offline due to crash),
the system will notice and re-emit the broadcast with the same input again as before to
guarantee the execution of all tasks eventually.

5.3.3 SerializeUtils

Instances of Job use the helper class SerializeUtils to serialise user-defined Task class(es)
and objects as well as instantiations of IMapReduceBroadcastReceiver, such that they
can be transferred to all nodes without them having to know about the actual implemen-
tations. On reception, SerializeUtils may then be used to deserialise the whole Job again
and execute the current Task. Thus, a user needs to be familiar with the provided meth-
ods to effectively serialise and deserialise a Job. Furthermore, SerializeUtils may be used
to transfer user-defined extensions of other classes and interfaces, provided these super
classes or interfaces are available on all nodes that receive the extensions. To be able to
instantiate transferred objects on a node, first, deserializeClassFile() needs to be invoked
to make the class files available. Only then may deserializeJavaObject() be used, as it
takes these deserialised class files as a second parameter "classes” to correctly instantiate
the serialised object specified in the objectData parameter as can be seen in Figure 5.5.

26 CHAPTER 5. PROTOTYPE IMPLEMENTATION

m Start ﬂ Map ﬂ Reduce ﬂ Print ﬂShutdown
nu Task Task Task Task Task
O previouslid O currentld

Figure 5.6: Task chaining. The order of task execution is enforced by specifying the pre-
viousld of a task to be the currentld of the preceeding task. StartTask has no previousld
(thus, null), which is required to specify a Job’s starting point.

5.3.4 NumberUtils

To simplify the generation of Number640 keys and removing the need to define every
hash themselves, users are provided with a NumberUtils class. Two overloaded methods
allSameKey() with either String or Integer input parameter will create a Number640
key consisting of location and domain keys as hashs of these input parameters, whereas
content and version key are set to Number160.ZERQO. This is especially useful when adding
input values to the NavigableMap of the Task’s broadcastReceiver() input parameter.
Additionally, NumberUtils provides some publicly accessible constants that may directly
be used within Task or IMapReduceBroadcastReceiver instances to simplify the consistent
use of the same keys on the input NavigableMap, like CURRENT_TASK or NEXT_TASK.
However, users are not required to use all of them but knowledge of their existence may
facilitate the implementation of own Tasks or IMapReduceBroadcastReceivers.

5.4 Usage Demonstration: Counting Words

In this section, an actual implementation of a complete MapReduce job to count all
words in a set of files is outlined to allow potential users a better understanding of how
to utilise the prototype. It consists of five Task extensions, namely, StartTask, MapTask,
ReduceTask, PrintTask, and ShutdownTask, executed in this order. The succession is
enforced by specifying the previousld of each task to be the currentld of the task to be
executed beforehand, see Figure 5.6. The complete implementation can be found in the
package net.tomp2p.mapreduce.examplejob.

5.4.1 StartTask

StartTask reads all files locally and emits them individually to the DHT, each finished
with a broadcast causing a MapTask to be started on that file on every receiving node.
Location keys are hashes derived from file names, while the domain key is a hash of
the peer’s ID. This facilitates distinguishing results emitted from the same nodes. Both
location and domain keys are sent as broadcasts for the succeeding MapTask to be able to
retrieve the data items from the DHT, a principle followed in all the tasks and depicted
in Figure 4.1 of Section 4.2.4. Additionally, every MapTask needs to be executed twice (a
user’s choice), thus the PeerMapReduce’s put() method receives 2 as the nrOfExecutions

5.4. USAGE DEMONSTRATION: COUNTING WORDS 27

parameter. The serialised job is sent with every broadcast as well but could have been
stored in the DHT instead, however fits the processing best.

5.4.2 MapTask

MapTask uses the received location and domain keys to access the DHT using PeerMapRe-
duce.get() and additionally, passes the complete input for other peers to resume execution
in case a node fails. Furthermore, because all files can only be accessed twice as spec-
ified by the user, it may happen that a MapTask will not retrieve the data. In such
cases, a MapTask simply returns and finishes without any execution or broadcast. On
receiving the data for the input domain and location keys, however, it generates a Java
Map<String, Integer> result object for the received file’s content, where the key cor-
responds to a token/word and the value to the number of times this token occurred in
that file. Thus, if two nodes are connected and two files emitted, four MapTasks will
be executed, generating four Java Map instances containing the word count for each file.
Before a token is counted, a user could specify to only do so for actual words or to use any
measure of word alteration like e.g. stemming to reduce the size of produced data items,
according to the user’s needs. The maps are then stored in the DHT using put(), again
with a nrOfExecutions parameter set to 2 to avoid executing the upcoming ReduceTask
too many times, and a broadcast emitted. The broadcast message, again, contains the
location and domain keys for the result Map for that file and node. The location key
remains the same as before (a hash of the file name), whereas the domain key is a hash
of the peer ID with an additional random number to avoid clashes from other executions
of the same node with the same domain and location keys. An implementation like that
minimises network access and transfers a much larger overall dataset compared to a word
count where for each word, a 1 is emitted as shown in Listing 3.1. Moreover, it effectively
links map and local combine functions as explained in Chapter 3.1.

5.4.3 ReduceTask

ReduceTask acts as an aggregation point for MapTask results. Before aggregating over
all files, the specified number of MapTask results for every file needs to be received as
broadcast in the form of location and domain keys. As long as this number is not reached,
ReduceTask temporarily stores received MapTask result keys and finishes without aggre-
gation or broadcast emission. This demonstrates the usage of a Task as an aggregation
point without emitting any broadcast as briefly noted in Section 4.2.1. Only when all
required keys for successfully finished MapTask executions are received, the ReduceTask
will retrieve the corresponding Java Maps from the DHT, aggregate them in an own
Map<String, Integer> with the key corresponding to a token/word and the value to the
overall count of that word in all files, store the result in the DHT, and eventually emit a
broadcast informing nodes about where to find the final word count results. Again, the
location key is a hash of the file name and the domain key a hash of the peer ID combined
with a random number to distinguish this aggregated result from other peers’ executions.
The reason why two executions of each MapTask are required is to demonstrate a user’s

28 CHAPTER 5. PROTOTYPE IMPLEMENTATION

ability to incorporate quality assurance measures (see Section 4.1.1) as needed: before fin-
ishing, ReduceTask could additionally retrieve both result sets from the DHT, aggregate
them individually, calculate a hash on each result to determine if they are the same, and
only emit the broadcast if this was indeed the case. In the case of three executions, a
majority vote could determine which aggregation result to finally emit if e.g. two of three
hash values were equal. As there is always a trade-off (e.g. longer execution times when
executing every task three times instead of once against a possibly false execution when
only carried out once), a user is able to choose such measures according to importance
of correctness, expected node crashes, etc. In the current implementation, however, it is
only chosen to retrieve one result set and aggregate the data before emitting the broadcast
without any measure of quality assurance to keep overall execution time in the evaluation
(Chapter 6) in a reasonable range.

5.4.4 PrintTask & ShutdownTask

PrintTask retrieves a ReduceTask’s result from the DHT and writes it out to the local
file system. The execution is again limited to 2. The last broadcast emitted causes the
receiving nodes to shut down after a certain amount of time, specified in ShutdownTask.
Two broadcasts from different PrintTasks need to be received before the shutdown is
initiated, assuring that the results are actually saved twice as a minimal reliability measure
in case one of the writing nodes’ disks gets corrupted right after execution. ShutdownTask
also emphasises the need for users to take care of a graceful disconnection of every node
from the overlay network and thus, the possibility to directly access and influence the
underlying P2P system as proposed in Section 4.1.1. The time offset allows for all nodes to
receive the required messages before the shutdown is actually initiated to avoid unwanted
execution disruptions.

5.4.5 ExampleJobBroadcastReceiver

A very basic implementation of the IMapReduceBroadcastReceiver interface (Figure 5.2)
is chosen that only finds the next task to execute and calls the corresponding broadcastRe-
ceiver() method with the received input data. However, this implementation also needs
to take care of Job deserialisation. Storing a Job for later usage within the IMapRe-
duceBroadcastReceiver is a requirement in the presented implementation because the
ReduceTask needs to aggregate received results. If the Job was not stored initially, every
new deserialisation of it would result in a new Job object replacing the current one. This
would erase all aggregated results stored within the ReduceTask due to related reasons
briefly outlined in Section 5.2.2 for the required ID. Without such dependencies, the Job
would not have to be stored necessarily.

5.4.6 Starting a MapReduce job

Assuming a user has defined these five Task extensions and an appropriate IMapReduce-
BroadcastReceiver as outlined before, a Job needs to be instantiated and the objects

5.5. UNDER THE HOOD 29

added to it. Furthermore, on each connected node, a PeerMapReduce instance has to be
running, generating an overlay network using TomP2P’s Peer instances. Connection be-
tween nodes is established in the same way as in other TomP2P applications by specifying
the TP address and port of the Peer instance of a participating node (the bootstrapping
node) to which all other nodes connect to. Additionally, the initial input for the StartTask
has to be defined. The example word count takes as an input the location of the files to
process and the number of files for the ReduceTask to know how many keys to expect. A
job is then simply locally executed by calling Job.start() with the specified input for the
StartTask as seen in Figure 5.3. Listing A.1 in Appendix A additionally provides a view
closer to the actual implementation although some details are omitted.

5.5 Under the Hood

This section briefly describes the mechanisms invoked when a user calls different methods
like get() or put(), and how basic reliability in the form of broadcast resubmissions and task
scheduling are implemented. Furthermore, some interesting details on certain problems
encountered during implementation and their corresponding solution are outlined.

5.5.1 Acquiring and Releasing Items

When a user calls put() or get() on PeerMapReduce, a MapReducePut- or GetBuilder,
respectively, is returned, see the return types of the corresponding methods in Figure 5.4.
These two classes resemble TomP2Ps Put- and GetBuilder but require additional param-
eters to allow for restricting data item access and resubmitting a broadcast in case of a
mid-execution node failure, as mentioned in Section 5.3.2. When the methods are exe-
cuted, a new instance of DistributedTask is created that eventually invokes methods of
TaskRPC to either put or get data items. The current implementation only uses memory
storage but could be extended to employ disk storage instead. Handling a PUT request
is implemented straightforward by directly putting the data into the storage. In case of
a GET request, it is first of all however necessary to assure that a data item can only
be accessed the number of times specified by the user in PeerMapReduce’s put() method
(see Figure 5.4 and Section 5.3.2). This is enforced by incrementing a counter and only
returning the value if it is smaller than the user-specified number of possible accesses.
Secondly, and more importantly, every node containing the item in its storage facility is
required to allow access again to this scarce data item if a node that was granted access
to it crashes during execution of the corresponding task. In the case where the requesting
node is also the responding node, no measure needs to be taken because if it crashes dur-
ing task execution, the data item is lost anyways. Only when the requesting node is not
the same as the responding node, a connection close listener is added for the connection
of the requesting node that is called when the responding node notices its disconnection.
Once the connection is closed, this listener will release the data item by decrementing the
counter and emitting the broadcast again using the input provided when the user called
the get() function. The close listener is removed when the broadcast of the finished task
for this data item is received.

30 CHAPTER 5. PROTOTYPE IMPLEMENTATION

<D1> <D1>
A B ©
G
—— ET D1 N
t D
BC FINISHED D1 "“J~~--BC FINISHED D1 S
ey,
! >

Figure 5.7: Although both B and C contain data item D1 requested by A, only one repli-
cation needs to be queried and retrieved to start execution on A. However, the execution
is finished and a broadcast sent quicker than the second GET request arrives at C. Thus,
C would ignore the broadcast and add a listener to the connection to A for data item D1
although the execution of D1 was already finished, see the descriptions in Section 5.5.2.

5.5.2 Network Latency Effects on Replicated Data

In the next part, some interesting issues and their resolution are outlined, which addi-
tionally realised a simple and effective random order scheduling.

Broadcast before GET

When a node puts data into the DHT, there will usually be multiple replications of the
same data item on various nodes to avoid data loss in cases of node crashs. However,
when PeerMapReduce.get() is called, not all nodes containing the same data item are
visited at the same time necessarily to invoke the counters on them, depending on the
chosen configuration. Instead, a subset of the replications of a data item is retrieved
and, using a voting scheme, it is decided if the corresponding data item can actually be
retrieved or not. Other nodes containing further replications of the same data item may
only be updated afterwards although another node may already have finished execution
on that data item. A simplified version of the problem is depicted in Figure 5.7, where
two replications exist but only one needs to be checked and retrieved to start execution.
This eventual consistency has the big advantage of speeding up retrieval. A disadvantage
is that a node may already have finished execution on the data item and broadcasted the
result again before all nodes holding a replication of that data item are actually informed
about the previous GET request on it. In that case, a node that has not received the
GET request yet but instead a broadcast that the task on the same data item is finished,
will eventually add a connection close listener to the connection for a data item to the

5.5. UNDER THE HOOD 31

requesting node once this outdated GET arrives, although the task execution on that
data item was already successfully finished. Thus, when a broadcast message is received
but there is no connection close listener to remove on that item, a node will store this
information locally. Every received GET request then, before sending the data item to the
requesting node, checks if it has stored a received request for this item by the requester
already and if so, refuses to respond this node with the data item. Only then, the local
information about the too early received broadcast message is removed, enabling the same
requesting node to try to access this data item again. Consequently, every data item can
only be accessed once by every node at the same time, not multiple times, which is a
limitation of the current prototype.

Majority Vote to Avoid Neutralisation

Configurations for replication and collection can be adjusted so that the problem outlined
in the section before can entirely be avoided: e.g. if there are three replications, execution
can only be started if all three items were queried. Although with such a setting, no
broadcast for a finished item may be received before the GET to that item is processed,
accesses to data items by different nodes may neutralise each other due to the counter
on that data item. This behaviour could be observed in preliminary experiments that are
noted in Appendix B. An extreme example is depicted in Figure 5.8. D1 is replicated
three times on nodes A, B, and C, and the user defined in the put() method that D1 should
only be granted access twice. As all nodes will immediately start execution of a task on
broadcast reception, all data items will be queried in parallel by all nodes. However,
access is only granted if all three data item replicas allow it, meaning their access counter
is smaller than 2 before incrementing. Thus, before deciding if access can actually be
granted, all data item replicas need to be queried to see if this is indeed possible. If only
one data item was accessed already more than twice, it should not be possible to access
it once more. As the local GET request from A, B, and C will most likely be granted
immediately as there is no slow network access needed, the corresponding access counters
of D1 will be incremented from 0 to 1. However, before these three nodes are able to check
if they can indeed access the data item also on the respective other 2 replicas, D is granted
access to D1 on all 3 replicas as the counter on each can be incremented from 1 to 2. The
GET requests of the other three nodes arrive much later at the respective peers containing
the replicas and are thus denied access as the access counters were already incremented
to the maximum of 2 due to node D’s request. This leads to the undesired effect that D1
is only processed once, although it should have been processed twice. To overcome this,
the restriction that all replicas of a data item need to be accessible was discarded and
instead, a relaxed majority vote is established: if a data item is granted access equalling
or more than | N/2] times, where N is the number of replicas, access to it is still granted
for that request. In the outlined example, thus, the data item is still received if at least
one replica is accessible (|3/2] = 1). Unfortunately, the majority vote now leads to the
problem that all four nodes are able to execute on the respective data item although only
two should be able to do so. A solution to still enforce a user’s execution restrictions is
explained in the next subsection.

32 CHAPTER 5. PROTOTYPE IMPLEMENTATION

<D1, 0> <D1, 0> <D1, 0>

<D1,1>:|

<D1,1>:|

A B,C
<D1 1>:| request D1
? ¥ Raduaae é Ioca"y

(granted)

<D1, 2> D

P requests D1

.. > (granted)

D1, 2> A

requests D1
remotely
(denied)

<D1, 2>

. — | b2

B
requests D1

remotely
(denied)

<D1,2 c

requests D1
remotely
(denied)

<D1, 2

<Data, access counter>

GET REQUEST for D1

Figure 5.8: An example where GET requests neutralise each other, leading to the unde-
sired effect that data item D1 is only executed once instead of twice as the user intended.
See the corresponding descriptions for a detailed explanation in Section 5.5.2.

5.5. UNDER THE HOOD 33

Stabilisation and Scheduling with Random Waiting Time

The issue of too many granted accesses is effectively resolved by adding a user-defined,
variable waiting time. Whenever get() is invoked, it waits a random time between 0 and
a user-specified number of milliseconds before actually executing the GET request. Thus,
all nodes requesting the same data item will wait a different time until they start the
retrieval process. If the difference between two access times is large enough for all nodes
with the same data item to be visited, the restriction of accesses can effectively be en-
forced to the user-specified nrOfExecutions in the put() method. Preliminary evaluations
showed a much more stable execution and only few additionally granted item accesses
when using waiting times of around 3 - 7 seconds. Another advantage is the more likely
random order in which data items will be accessed and processed by different nodes. The
resulting randomised scheduling is similar to the one described in [30]. This simple mea-
sure effectively lowers false accesses and thus, leads to better node utilization as nodes
do not execute too many unnecessary tasks and it is less likely for one node to retrieve
most data items while others retrieve none. In most cases, this waiting time leads to
the desired effect that all replicas are queried in the same order and thus, counters are
incremented on all data items for the same node requesting it. In the example of three
replications, it indeed could be seen that most requesting nodes either got three granted
and zero denied replies or the other way round. However, variations could still be observed
in certain cases, like granted twice and denied once or vice versa, such that the majority
vote of the previous section decided to grant more accesses than required. Nevertheless,
the additionally executed tasks were only few, which is acceptable because at least the
previously often occurring neutralisation of accesses as exemplified in Figure 5.8 could
effectively be suppressed as conducted tests showed.

34

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Chapter 6

Evaluation

The following experiments are carried out as a preliminary evaluation of the system’s
behaviour. The prototype is not compared to other implementations like Hadoop yet.
As initial experiments shown in Appendix B and also, other studies (e.g. [29]), already
confirmed network traffic to be one of the main reasons for slowdowns, the conducted
evaluation covers only an analysis of (measurable) traffic and not execution speeds. The
pursuit goal is to keep average traffic measured per node constant with an increasing
number of nodes as stated in the introduction and if not, to explain why there is a non-
constant traffic.

6.1 Software and Testing Environment

Up to six commodity notebooks are used for the evaluation as shown in Figure 6.1.
The software for all nodes is started directly from Eclipse Mars (Release 4.5.1) [6]. All
notebooks share their resources with other applications but are assigned up to 1 GB of
memory for the execution of jobs. The experiment only utilizes in-memory instead of
external storage. Nodes are connected using a Netgear Ethernet Switch (ProSafe Plus
8-port Gigabit). Certain statistical analyses and visualisations utilise IBM SPSS 23 [4]
and Microsoft Excel [8].

6.1.1 Configuration Issues

Before running the experiment, initial trials revealed problems with timeouts of connec-
tions in cases of too many and too large files. Conducted analyses revealed that when too
many connections are opened at the same time and multiple files are transferred that have
an overall size larger than a certain amount, some of the connections may not transfer any
data at all and thus, TomP2P’s default waiting time of around 5 seconds is not enough
to reset the corresponding timeout. With increasing file sizes, also these timeouts had to
be increased steadily. Thus, for the final experiment, all values regarding timeouts are set
to Integer. MAX_VALUE. However, although it might be a feasible workaround for these

35

36 CHAPTER 6. EVALUATION

Name oS RAM Disk (Type) CpPU

ASUS X535 Win 10 (64 Bit) 1GB 111 GB (SSD) 4*2 Gl
Lenovo T61 U 14.04 LTS (64 Bit) 4 GB 153.2 GB (HDD) 2 * 2.2 GHz
Lenovo T410 U 14.04 LTS (64 Bit) 8 GB 483.8 GB (HDD) 4 * 2.67 GHz
Lenovo W500 U 14.04 LTS (32 Bit) 4 GB 310.8 GB (HDD) 2 * 2.53 GHz
Lenovo T61 U 15.10 LTS (64 Bit) 2 GB 123.8 GB (SSD) 2 * 2.2 GHz
Lenovo T61 U 14.04 LTS (64 Bit) 2 GB 243.9 GB (HDD) 2 * 2.5 GHz

CTAU'»QOOL\D»—‘:H:

Table 6.1: Hardware used during experimentations. # indicates which computers are
participating in the executions: machines 1 - 3 are used for 3 node executions, 1 - 4 for 4,
1-5for 5, and 1 - 6 for 6. Win denotes Microsoft Windows, U Ubuntu.

first experiments, other solutions need to be found in further development stages of the
prototype.

6.2 Traffic Analysis for 1 Job Execution

The first experiment focuses on average traffic measured per node when only one job is
submitted from machine #1 (Table 6.1) in the cases of 3, 4, 5, and 6 connected peers. The
intention is that average traffic per node does not increase with additional nodes so that
there is an advantage in adding more nodes to the execution. Thus, the hypothesis this
experiment evaluates is: the average traffic per node remains constant for the execution
of one job with an increasing number of nodes. MiB and similar notations are the base-2
equivalent of MB etc. with base 10, see the abbreviations list at the back of this document.

6.2.1 Experimental Setup

The used job is the same as explained in Section 5.4. A dataset of 12 MiB of texts with
an overall of 282487 different tokens compiled from the Gutenberg Project [1] is split
into 24 parts of 0.5 MiB. Thus, StartTask conducts 24 DHT-PUT operations for every
file split that will be executed twice each (in the best case), resulting in 48 MapTasks.
These are then combined twice in the ReduceTask, and finally written out to the file
system twice in the PrintTask. Results with more than 48 finished MapTasks or other
irregularities are discarded from evaluation to achieve a coherent image of the produced
traffic in an overall ideal case (no node crashs). The small dataset size was chosen to
avoid overloading the JVM’s assigned memory as only in-memory storage is currently
employed in the prototype and to lower the time to conduct the evaluation. Preliminary
experiments with up to 100 MiB however were also successful. Every dataset put into the
DHT is replicated 3 times, meaning that 3 nodes will contain the same data, and 3 parallel
requests are conducted. Eventual consistency (see Section 5.5.2) is thus disabled. After
removing faulty experimental job runs (around 1 per 10 executions with 4 or more nodes,
none in the case of 3 nodes), the remaining measurements consist of 10 runs for 3 nodes, 12
runs for 4 nodes, 11 runs for 5 nodes, and 20 runs for 6 nodes. Traffic per node is analysed

6.2. TRAFFIC ANALYSIS FOR 1 JOB EXECUTION 37

by directly parsing the debug log output of TomP2Ps Decoder class. This is the most
accurate representation of traffic per node as every message can be associated with its
request type and therefore, all PUT, GET, BROADCAST, and other messages and their
sizes can effectively be distinguished from each other. Traffic can only be captured when
requests are sent from one to another node. Thus, requests that are directly handled by
the issuing node itself cannot be measured. Finally, data for each number of participating
nodes (3 to 6) is averaged for every message type.

123.32
114.52 11.66
105.13 9.43

91.56

mPUT REQUEST ®mOKPUT/GET ®=GET REQUEST BROADCAST

Figure 6.1: Overall average traffic per node for 3 - 6 connected machines.

6.2.2 Results

Figure 6.1 shows an overall summary of the log-parsed traffic per node for 3 to 6 connected
machines, based on data summarised in Appendix C. The composition includes GET and
PUT requests and responses and the overall sum of broadcast message sizes in MiB. Other
traffic components that only contributed magnitudes below 0.01 MiB are not included (e.g.
ping- or neighbour-related messages) as they do not alter the overall traffic in a noticeable
manner. It can be seen that captured traffic per node is much larger than 12 MiB. Even
in the case of 3 nodes, the summed-up overall traffic is 91.58 MiB. This is a consequence
of the job’s design and replication of data. Furthermore, there is an increase from 91.58
(3 nodes) to 123.4 MiB (6 nodes) visible. Effectively, all message types increase with sizes
(together with the number of messages, see Table C.1). The small standard deviation very
close to 0 listed in the same table also indicates significantly different overall traffic sizes
with increasing numbers of nodes. In the following, important traffic parts are analysed
to explain these increases.

38 CHAPTER 6. EVALUATION

74
72
70
68
66
64
S |
s
0
56 o

54

: ”‘”-”—' -o-PUT REQUEST
< —MAX PUT REQUEST
48

3 4 5 6
Nodes [Count]

Figure 6.2: PUT requests increase with every node added to the execution. However,
the maximal number of PUT requests (74) is never reached, and the curve flattens out,
presumably approximating this maximum value progressively with every additional node.

Seemingly Increasing PUT Request Traffic

Figure 6.1 shows traffic sizes for PUT requests to increase from 46.24 to 57.78 MiB when
expanding the number of executing nodes from 3 to 6. However, the increase needs to be
analysed in terms of number of PUT request messages sent and not in sizes of MiBs to
explain the increasing traffic, which is depicted in Figure 6.2. The number of PUT request
messages correspondingly increases with every added node. However, the increased traffic
is indeed a consequence of the DHTs attempt to distribute the files among all connected
nodes more evenly and the fact that traffic is not measured in case the data is stored on
the requesting node itself. To proof this, the maximal number of put requests needs to be
calculated for that job: 24 in the StartTask, 48 in the MapTask, and 2 in the ReduceTask.
Thus, maximally 74 PUTs are possible on one node if every PUT request is directed onto
that node. This maximal average number of PUT requests per node is also drawn in
Figure 6.2 as a red line. Analysing the non-averaged number of PUT requests on every
node individually reveals that no node handles more than 74 PUT REQUEST messages
in any case, regardless of the number of nodes connected. Therefore, it can also be seen in
Figure 6.2 that the averaged number of PUT request messages (and thus, the overall size
as shown in Figure 6.1) does not linearly grow with every additional node but instead,
approrimates the maximal number of 74 messages. Conclusively, the increasing sizes can
fully be attributed to the way in which traffic is measured and not an actual increase of
traffic, supporting the overall pursued goal of achieving constant average per-node traffic
with increasing number of nodes.

6.2. TRAFFIC ANALYSIS FOR 1 JOB EXECUTION 39

© GET REQUEST -@GET OK GET DENIED
180

160 °
140 °

120

100

80 @ o A
60 @

40

20

Nodes [Count]

Figure 6.3: GET request messages and number of granted (OK) and denied GET requests
for 3 to 6 nodes.

Effective Limitation of Granted GET Requests

Evaluation of averaged number of GET request messages per node reveals an effective
limitation of the number of times a computation node can acquire the data for a per-
broadcast received task. In Figure 6.3, with every added node, the number of GET
REQUEST messages increases as they all listen to incoming broadcasts and will try to
acquire the data to execute the corresponding task. However, also the number of DE-
NIED messages (meaning, too many nodes tried to access the item already) increases
with the same magnitude. Even more importantly, the increase in GET OK messages
is not linear like GET REQUEST and DENIED messages but approximates a certain
upper bound of around 80 messages as can be observed in Figure 6.3. Although there
are cases where one node may still send a granted message (as the increasing number of
GET OK messages with more nodes implies, which consequently results in an increased
likelihood of more nodes accessing the same data item), tasks are only rarely executed
more than they were intended by the user. However, it is not a perfect solution as there
indeed still are cases where more than the minimal number of retrievals are undertaken
but it is effectively limited by the additional waiting time (Section 5.5.2). Nevertheless,
the trade-off is acceptable as it is more important that a job does not halt due to neu-
tralisation than that the additionally produced traffic harms execution performance. The
result still supports the goal of constant average per-node traffic with increasing number
of participating nodes, taking into account possible deviations due to imperfect access
restriction mechanisms.

40 CHAPTER 6. EVALUATION

20.0
-+-GET REQUEST MiB 4 160
180 -®-BROADCAST MB .-
-+-GET REQUEST MSGs L 140
o ®
16.0 -#-BROADCASTMSGs % .
T e 120
14.0 e o +
,,,,,, 100
12.0 T P —%
0’/'-‘ el -—-""""-— e 80
10.0 L T R
80 ® - B — 60
&« - ¥
60 T 40
=
4.0 20
3 4 5 6

Figure 6.4: GET requests and BROADCAST messages for 3 to 6 nodes.

Broadcast Input Data and GET Requests

The presented implementation of the word count example sends on every successful PUT
operation (and in some other cases) a broadcast containing various items. On reception,
these broadcasts cause on every node the emission of a GET request for the MapTask.
Thus, as Figure 6.4 clearly shows, both messages and corresponding message sizes in-
crease almost linearly and equally for both types of messages with increasing node count.
Although the larger number of messages is of no surprise (as every additional node will
try to retrieve the data, more requests overall will be received on nodes containing the
data, and broadcast messages are submitted more times to avoid the loss of messages, see
Section 3.2.3) problematic is the increase in size: with every additional node, over 2 MiB
of extra traffic is produced. The problem can be found in the broadcast input used to
distribute information about next tasks to execute: such a message is, on average, around
0.085 MiB. The main part of data transferred can be attributed to the input parameter
(see Figure 5.1), of which the serialized job is the largest part. Analysis of the job’s seri-
alised form (Java Job, Task, and IMapReduceBroadcastReceiver objects and all resultant
class files) revealed a size of around 71.3 KiB. Although on its own, a job is not that large,
the cumulated traffic increases noticeably: when only 3 nodes are connected, overall traffic
per node produced by broadcasts consists of an average of around 60 messages, equalling
5.14 MiB. However, as visible in Figure 6.4, this number increases steadily with every
added node, eventually equalling an average of around 136 messages with an overall size
of 11.66 MiB. Consequently, the same increase in average per node traffic can also be
seen for GET requests: on every call to PeerMapReduce.get() (see Figure 5.4), the same

6.3. COMPARING TRAFFIC OF 1 TO 2 JOBS 41

Split size [MiB] File size [MiB]

1 job 2 jobs
A 0.5 2 1
B 1 4 2
C 0.5 4 2
D 1 8 4

Table 6.2: Used datasets for evaluating the traffic of one and two jobs. Each configuration
is run for 3, 4, 5, and 6 nodes, resulting in 16 data points.

input data received as broadcast is passed and transferred as a means of enabling the
same broadcast to be emitted again should a node fail during execution (as explained in
Section 5.3.2) and thus, making the corresponding data available to the execution of other
nodes again. As all additional nodes try to acquire the data in the MapTask (although
only a limited number of nodes will actually receive it), also the number and sizes of GET
request messages increase. Consequently, the user needs to be aware of the fact that a
larger input may also increase broadcast and GET request sizes. Post-evaluation experi-
ments indeed show that GET request messages may become irrelevant (< 0.01 MiB) for
the overall average per-node traffic when the serialised job is removed from the input.
However, although messages increase with every added node in case of broadcasts and
GET requests, it does not add a significant amount of traffic to the overall execution, still
supporting the goal of having overall constant averaged traffic per-node with increasing
number of nodes.

6.3 Comparing Traffic of 1 to 2 Jobs

The second experiment focuses on traffic generated on every node when two jobs are
launched from two different machines in cases of 3, 4, 5, and 6 peer. This is compared to
the same amount of traffic produced when a single job is launched with the same overall
amount of data to process. The goal is to show that produced traffic for the same overall
dataset sizes stays the same, regardless of the number of jobs needed during execution
and if not, an explanation shall be found in the parsed data. Thus, the hypothesis this
experiment investigates is: the overall mean traffic per node is the same for one job
execution that has the same amount of data to process as two jobs. For this experiment,
insights presented in Section 6.2 is reused and referenced. Additionally, to avoid potential
problems with GET request messages, as they were shown before to increase overall
traffic as a side effect of passing broadcast input with every GET operation, the feature
is disabled.

6.3.1 Experimental Setup

The same job outlined in Section 5.4 is used for every submission. Datasets chosen for
one job execution are always double the size of those chosen for the execution of two
jobs, see Table 6.2. Split sizes, however, are the same in both cases. Replication and

42 CHAPTER 6. EVALUATION

parallel requests remain 3. Faulty experiment runs (with too many executed MapTasks)
are removed and not used in the evaluation to keep traffic comparable. As experiment
1 showed that messages and sizes only differ marginally with every run (small standard
deviation, see Appendix C), it was decided to obtain only 2 correct (in terms of number of
MapTasks executed and produced output) runs for each job, file size, and split size. These
two runs for each configuration are then averaged for the final evaluation. Again, traffic
data is directly parsed from TomP2P’s Decoder output with the associated limitation
as explained in Section 6.2.1 that requests sent and directly handled by the same node
cannot be measured.

80
70 R
60
-'...'
50 :
Ty =0.98x+2.23
40 .

30 "‘..

20 o

10

0 10 20 30 40 50 60 70 80

Figure 6.5: Cumulated overall per-node traffic in MiB for one and two job executions of
same split and file sizes as presented in Table 6.2, plotted against each other. See Table 6.3
for the actual values.

6.3.2 Results

Figure 6.5 shows a clear linear correlation of mean overall per-node traffic with increasing
file sizes. Spearman rank sum correlation test [25] also confirms this correlation to be

6.3. COMPARING TRAFFIC OF 1 TO 2 JOBS 43

Config. 1 job [MiB] 2 jobs [MiB] A [MiB]

A-3 15.36 17.02 +1.66
A-4 15.43 19.01 +3.58
A-5 18.80 20.37 +1.58
A-6 19.88 21.79 +1.91
B-3 27.41 29.03 +1.62
B-4 31.04 32.46 +1.42
B-5 33.26 34.93 +1.67
B-6 34.72 36.64 +1.92
C-3 29.39 30.45 +1.06
C-4 33.38 35.32 +1.93
C-5 35.78 36.63 +0.85
C-6 38.29 39.35 +1.06
D-3 53.82 54.93 +1.11
D-4 99.95 61.64 +1.68
D-5 65.13 65.73 +0.59
D-6 68.23 69.92 +1.70

Table 6.3: Mean overall traffic per node for the execution of same dataset sizes for one
and two jobs. In the Config. column, A to D refer to column # in Table 6.2, and 3 to 6
specify the number of nodes. A indicates the difference in traffic sizes between one and
two jobs.

statistically significant (p-value < 0.0001) with a very high positive correlation coefficient
of 0.997, indicating an almost perfect positive correlation (1.0) as expected. Also the
estimated linear line in the plot has a slope close to 1 (0.98). This shows that the overall
traffic is almost the same between one and two jobs (for example, if the traffic produced
by a single job is 60 MiB, traffic measured for two jobs is also very close to 60 MiB).
Additionally, Table 6.3 shows similarly to experiment 1 how traffic sizes increase within
split and file size configurations when more nodes are added. On closer analysis, the
same problems already revealed in experiment 1 can be observed as well and are thus not
investigated further. However, besides these explained differences within job execution
configuration, the calculated linear line in the plot also indicates an offset of 2.23 MiB
between them, meaning that for every single-job mean overall traffic value, the estimated
corresponding two-job value is off by +2.23 MiB. This offset can also be seen in Table 6.3 in
column A. Depending on the configuration, it ranges from 0.59 to 3.58 MiB. The increase
is systematically positive for two jobs compared to one job (although the magnitude
may vary) and stays between the specified range even though the overall dataset sizes
increase. Analysis of the individual messages show a problem in the configuration of the
job executions: for two jobs, ReduceTask is executed four times, not twice, which results
in two additional put operations. The same applies to the PrintTask that retrieves the
result data overall four times, not only twice, as each job dictates it to be executed twice.
Thus, the overall systematic positive increase can be attributed to these additional two
operations, supporting the hypothesis outlined initially that the mean overall per-node
traffic remains constant regardless of the number of jobs executed at the same time.

44

CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

This chapter takes a look back at the initially formulated research questions, summarises
the achievements, and gives an outlook for future work to improve the presented prototype.

7.1 Research Questions and Thesis Goals Revisited

Overall, the initially formulated thesis goal of designing and implementing a completely
decentralised MapReduce environment on top of a P2P overlay network with high user
flexibility, little coordination and communication overheads, and a distributed hash table as
main storage facility (RQ 1), could be achieved. The system allows users to implement a
data processing chain without being restricted to only map and reduce functions. The high
flexibility enables the implementation of any additional method or feature required before,
during, or after processing, which could be demonstrated to be effective with a simplified
word count example. The evaluation also shows that the system is not restricted to a
small number of nodes but may likely be deployed on more than the presented 6 machines.
Additionally, experiments with Ubuntu 14.04 LTS (32 and 64Bit), Ubuntu 15.10 LTS, and
Microsoft Windows 10 confirm the prototype’s intended effortless deployability on various
java-enabled platforms. As data and jobs can be stored and transferred either through
broadcasts or DHT calls, it can be easily accomplished that new nodes may join and
immediately start execution, thus contributing to the overall finishing of a job without
any additional communication or coordination needed. Broadcasts, while kept small,
provide a feasible way of communication and allow a very loose coupling with only few
dependencies between executing nodes and tasks. If such dependences are still required,
users can implement them in the task extensions. Furthermore, the restriction to only send
broadcasts on completed executions simplifies coordination tremendously. The number
of executions per data item can effectively be limited by internal mechanisms, which
additionally create randomised data accesses as a side effect. Thus, nodes are enforced to
execute different data items concurrently without requiring any other form of coordination
or assignment of tasks, avoiding a master-slave architecture. Nevertheless, there are still
some issues to resolve and more improvements need to be undertaken before the prototype
becomes a viable alternative to established MapReduce frameworks like Hadoop [10],

45

46 CHAPTER 7. SUMMARY AND CONCLUSIONS

which is why Section 7.2 provides guidelines for and further discussion points on potential
extensions of the prototype to incrementally improve its performance.

Another goal of this thesis was to keep traffic constant for single-job executions if more
nodes are added (RQ 2.1) but also if two jobs are executed at the same time with the
same overall file size to process as an equivalent single job (RQ 2.2). As evaluation results
show, although traffic increases can be explained in many cases, it is still not completely
constant overall. There are certain factors that may lead to larger overall traffic users need
to be aware of as they may directly influence them with their implementation behaviour:

1. As a consequence of more connected nodes, also the number of average GET re-
quests and broadcast messages per node increases. If a job is sent with every GET
request and broadcast, the amount of traffic produced may quickly add up to some
MiB due to the serialised objects and class files within the job. A strategy to over-
come this is to put the whole job into the DHT and send only the key to it on every
broadcast. Furthermore, larger split sizes resulting in fewer keys also decrease the
overall number of broadcast messages and GET requests. Nevertheless, in the con-
text of overall traffic, GET requests and broadcast messages have only a marginal
impact compared to PUT request (storing data items) and GET response (retrieval
of data items) operations as shown in Figure 6.1, the latter being effectively limited
with measures described in Section 5.5.2.

2. Although the time offset allows for a better enforcement of user-defined execution
restrictions, the majority vote intended to avoid sudden system interruptions may
lead to superfluous executions that consequently result in a higher overall per-node
traffic.

3. In cases of multiple job executions, the same job executed twice in parallel with half
the dataset size of a single job (but overall the same amount of data) may not be
the same due to a different number of task executions. It is the responsibility of the
user to take care of such problems.

Moreover, the time offset enforced on GET requests, although limiting additional un-
wanted executions, restricts optimisations due to the randomised execution times: if a
user knows certain nodes to have a better performance than others, it cannot be guaran-
teed that these nodes will also execute more tasks. However, according restrictions may
also be implemented in the task directly (e.g., a user can identify a node by accessing the
Peer’s ID and choose to only execute a certain task on a specific node).

Besides, although not directly assessed here, a note on execution speeds is in order. Net-
work access is one of the principle factors that harms the system’s execution speed, which
was already emphasised in other publications (e.g. [29]) and one of the main reasons why
centralised systems like Apache Hadoop and its HDF'S can achieve such high performances.
Preliminary experiments depicted in Appendix B also indicate increased running times
for multi-node executions that require network access compared to single-node executions
that only store and retrieve data locally. Also Google’s MapReduce implementation takes
the location information of input files into account and attempts to schedule a map task

7.2. FUTURE WORK 47

on a machine that actually contains a replica of the input data [16]. Proposed optimisa-
tions in Section 7.2 are a first step towards achieving performance levels closer to these
frameworks.

7.2 Future Work

During design, implementation, and evaluation, several limitations of the presented proto-
type became apparent. Besides the urgently needed resolution of some issues, the proposed
additional future works provide a guideline in the endeavour of making the prototype a
more feasible alternative to other implementations like e.g. Hadoop [10].

7.2.1 Encountered Issues and Limitations

There are several issues in the current implementation to be resolve as soon as possible
that are outlined next. Furthermore, some limitations and points of awareness are listed
for potential users to consider.

Timeouts

As outlined in Section 6.1.1, there is a problem regarding resets of connection timeouts.
The current implementation makes use of Integer. MAX_VALUE to overcome this problem.
However, with larger datasets that take much longer to execute, the same problem as for
smaller datasets can be expected. Additionally, nodes may run out of connections to
open if too many are established at the same time. Therefore, an urgent future work is to
identify the reason why the system does not reset the timeouts and solve it accordingly.

Multiple Simultaneous Task Executions on a Node

At the moment, every node can only retrieve every data item once to avoid problems with
eventual consistency measures as explained in Section 5.5.2. Only when a broadcast for
a completed task of this data item is received, the same node is able to try to access the
same item again. Thus, in a next development step, it should be evaluated how a node
can distinguish multiple accesses to the same data item at the same time.

Filtered Broadcast Messages

A further encountered issue is that broadcast messages may be received multiple times
on a node, leading to superfluous executions of the same task. This behaviour is observed
systematically for nodes that are not the sender of a message. So far, it is hypothesised
that this behaviour can be attributed to the way in which broadcasting is implemented in

48 CHAPTER 7. SUMMARY AND CONCLUSIONS

TomP2P’s broadcasting facilities (see Section 3.2.3). It is currently suppressed by storing
received messages for its contained storage key and ignoring messages that contain the
same key. Consequently, every node may only execute tasks on each storage key once.
This limits the possibility for executing tasks that were resubmitted due to node crashes.
Thus, timeouts on the storage key need to be introduced so that new messages containing
the same key can be executed again after a certain amount of time.

Deserialisation Issues

A note of awareness for users is that class files and objects of user-defined extensions sent
to nodes and then deserialised again may result in new class files and objects, see the brief
explanations in Section 5.2.2. A class that is checked to be of equal type as another one
using getClass() will not be recognised as such although it indeed is the same class. This
could be observed for implementations of IMapReduceBroadcastReceiver, where the same
instance was added multiple times although it was only intended to be added once. A
subclass-wide identifier (as explained in Section 5.2.2) makes sure that only one and not
multiple instances are added on the same node with every broadcast received. Similarly,
if a task in a job relies on the temporary storage of data, as e.g. ReduceTask does in
the presented implementation, an existing job may be overwritten and all contained data
items lost if the same job is deserialised and assigned multiple times due to the repeatedly
received broadcast messages. Thus, users need to be aware that every deserialisation on a
node yields new class files and objects and take according precautions to avoid unexpected
problems.

Thorough Testing & Evaluation

Currently, only most important classes are tested, like TaskRPC, DistributedTask, and
SerializeUtils without which the current prototype would not work. Included in these tests
are also some of the other classes like connection listeners or PeerMapReduce. However,
some of the above mentioned issues may also be found through more thorough testing,
thus requiring more test cases for both classes and components. Moreover, the datasets
used in these initial evaluations are very small. Further executions with larger datasets
and possibly more nodes at the same time are thus required. Additionally, although im-
plemented and tested using test cases, releasing data items and resubmission of associated
broadcasts as a consequence of node crashes during execution are not yet assessed in a
real situation as the current evaluation only covers an ideal case without node crashes.

7.2.2 Data Clean-Up and Storage

The current prototype lacks facilities to remove intermediate or unused results and simply
stores everything from start to end in the memory-based storage object. As the evaluation
revealed, already small datasets of only 12 MiB may produce an overall PUT traffic per
node that can, depending on the chosen configurations, increase by several magnitudes

7.2. FUTURE WORK 49

(in the presented setting, up to five times larger, see Figure 6.1). Moreover, the use
of disk-based storage to enable the execution of much larger dataset sizes needs to be
implemented and tested. To avoid overloading nodes with outdated datasets, timeouts
on the data should to be added, such that the system automatically removes unused data
sets after a certain amount of time it was not accessed. It has to be noted that the current
implementation would allow users to implement such facilities themselves if they intended
to do so by accessing the storage object through the PeerMapReduce class.

7.2.3 Reducing Traffic and Execution Time

A clear problem in the prototype, which tremendously harms execution time, is the current
use of network accesses on every PUT and GET request. Local execution may allow for
much shorter processing time and smaller traffic overheads if most GET operations are
executed directly on the own storage and instead of accessing the network. Only PUT
operations would be necessarily required to distribute the data onto the different nodes.
Execution could look as follows: first, the StartTask reads the local files and distributes
them to the DHT using the same PUT requests as before and finishes with a broadcast
for every file. Instead of trying to acquire the data through DHT-based GETs, however,
every node tries to execute successive MapTasks by finding the data on the own local
storage first instead. If it does not find it, the execution for the received storage key
is simply ignored or at least postponed for when there are still tasks to execute but the
locally stored datasets are exploited. Only then could a peer start to access the DHT using
distributed GET requests. Such an implementation would also further ease the need for
synchronisation of the datasets before granting or denying their access (see majority vote
and random time offsets mentioned in Section 5.5.2) as parallel requests may only rarely
need to be handled. Additionally, this could contribute to reducing execution time as
well. Again, users are able to implement such a behaviour to some extent themselves by
directly accessing the storage object instead of using PeerMapReduce.get().

7.2.4 Simplified Task Implementation

In an earlier prototype, Oracle Nashorn [7] was used to allow for the implementation and
transfer of JavaScript functions instead of Java classes. Most importantly, serialisation
and deserialisation of both Java class files and objects could be simplified as only a set
of Java String representations needs to be sent to nodes. Thus, the already existent
components of this engine should be ported to and tested on the new prototype.

90

CHAPTER 7. SUMMARY AND CONCLUSIONS

Bibliography

1]

[14]

Free ebooks by Project Gutenberg. https://www.gutenberg.org. Accessed: 2016-04-
11.

Hadoop MapReduce Next Generation - Setting up a Single Node Cluster.
http://tinyurl.com/hadooplin. Accessed: 2016-04-30.

Hadoop20nWindows. http://tinyurl.com/h24win. Accessed: 2016-04-30.
IBM SPSS - IBM Analytics. http://tinyurl.com/ibmspss23. Accessed: 2016-04-11.

Java SE Development Kit 8 - Downloads. http://tinyurl.com/java8oracle. Accessed:
2016-04-15.

Mars Eclipse. https://eclipse.org/mars. Accessed: 2016-04-11.

Oracle Nashorn: A Next-Generation JavaScript Engine for the JVM.
http://tinyurl.com/oraclenashorn. Accessed: 2016-04-21.

Spreadsheet Software Programs - Excel Free Trial. http://tinyurl.com/huvub24. Ac-
cessed: 2016-04-11.

TomP2P, a P2P-based key-value storage library. http://http://tomp2p.net. Ac-
cessed: 2016-02-23.

Welcome to Apache Hadoop! https://hadoop.apache.org. Accessed: 2016-02-23.
Wireshark - Go Deep. https://www.wireshark.org. Accessed: 2016-04-16.

G. Camarillo. Peer-to-Peer (P2P) Architecture: Definition, Taxonomies, Examples,
and Applicability. http://tinyurl.com/p2poverview. Accessed: 2016-04-20.

E. Cesario, N. De Caria, C. Mastroianni, and D. Talia. Grids, P2P and Services
Computing, chapter Distributed Data Mining using a Public Resource Computing
Framework, pages 33-44. Springer US, Boston, MA, 2010.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
gnutella-like P2P systems scalable. Proceedings of the 2003 conference on Appli-

cations technologies architectures and protocols for computer communications SIG-
COMM 03, 25:407, 2003.

51

52

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[24]

[25]

[26]

[27]

BIBLIOGRAPHY

7. Czirkos and G. Hosszi. P2P based intrusion detection. Infocommunications Jour-
nal, 64:3-10, 2009.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

A. Lareida, T. Bocek, and S. Golaszewski. Box2Box-A P2P-based File-Sharing and
Synchronization Application. Proceedings of the 15th IEEE Conference on Peer-to-
Peer Computing (P2P\’13), pages 2-3, 2013.

H. Lin, X. Ma, J. Archuleta, W. Feng, M. Gardner, and Z. Zhang. MOON: MapRe-
duce On Opportunistic eNvironments. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC 10, pages 95-106,
New York, NY, USA, 2010. ACM.

F. Marozzo, D. Talia, and P. Trunfio. A Framework for Managing MapReduce Appli-
cations in Dynamic Distributed Environments. In 2011 19th International Euromicro
Conference on Parallel, Distributed and Network-Based Processing, pages 149-158,
Feb 2011.

F. Marozzo, D. Talia, and P. Trunfio. P2P-MapReduce: Parallel data processing in
dynamic Cloud environments. Journal of Computer and System Sciences, 78(5):1382—
1402, sep 2012.

P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In Revised Papers from the First International Workshop
on Peer-to-Peer Systems, IPTPS 01, pages 53—65, London, UK, UK, 2002. Springer-
Verlag.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
addressable Network. SIGCOMM Computer Communication Review, 31(4):161-172,
aug 2001.

A. 1. T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware
01, pages 329-350, London, UK, UK, 2001. Springer-Verlag.

R. Schollmeier. A Definition of Peer-to-Peer Networking for the Classification of Peer-
to-Peer Architectures and Applications. In Proceedings of the First International
Conference on Peer-to-Peer Computing, P2P ’01, pages 101-102, Washington, DC,
USA, 2001. IEEE Computer Society.

C. Spearman. The Proof and Measurement of Association Between Two Things.
American Journal of Psychology, 15:88-103, 1904.

L. A. Steffenel. First Steps on the Development of a P2P Middleware for Map-Reduce.
Technical report, 2013.

L. A. Steffenel, O. Flauzac, A. S. Charao, P. P. Barcelos, B. Stein, G. Cassales,
S. Nesmachnow, J. Rey, M. Cogorno, and C. Souveyet. MapReduce Challenges on
Pervasive Grids. 10(11):2192-2207, 2014.

BIBLIOGRAPHY 23

28]

L. A. Steffenel, O. Flauzac, A. S. Charao, P. P. Barcelos, B. Stein, S. Nesmachnow,
M. Kirsch-Pinheiro, and D. Diaz. PER-MARE: Adaptive Deployment of MapReduce
over Pervasive Grids. In 2013 Fighth International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, pages 17-24. IEEE, oct 2013.

L. A. Steffenel and M. Kirsch-Pinheiro. Leveraging Data Intensive Applications on
a Pervasive Computing Platform: The Case of MapReduce. Procedia Computer
Science, 52:1034-1039, 2015.

L. A. Steffenel and M. K. Pinheiro. CloudFIT, a PaaS platform for IoT applications
over Pervasive Networks. In 3rd Workshop on CLoud for IoT (CLIoT 2015), sept
2015.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. Conference on

Applications, technologies, architectures, and protocols for computer communications
(SIGCOMM °01), pages 149-160, 2001.

H. M. Tran, S. V. U. Ha, T. K. Huynh, and S. T. Le. A feasible MapReduce
peer-to-peer framework for distributed computing applications. Vietnam Journal
of Computer Science, 2(1):57-66, 2014.

o4

BIBLIOGRAPHY

Abbreviations

CPU
DHT
GB
GHz
GiB
HDD
KB
KiB
MB
MiB
0S
PB
PiB
P2P
RAM
SSD
TB
TiB

Bytes

Computing Processing Unit
Distributed Hash Table

Gigabyte in decimal, 10° B
Gigahertz, 10° Hz

Gigabyte in binary (gibibyte), 23° B
Hard Disk Drive

Kilobyte in decimal, 10° B

Kilobyte in binary (kibibyte), 2'° B
Megabyte in decimal, 10° B
Megabyte in binary (mebibyte), 22° B
Operating System

Petabyte in decimal, 10'° B
Petabyte in binary (pebibyte), 2°° B
Peer-to-Peer

Random Access Memory

Solid State Drive

Terabyte in decimal, 10*? B
Terabyte in binary (tebibyte), 24° B

95

96

ABBREVIATONS

List of Figures

3.1

4.1

0.1
5.2

5.3
5.4

2.5

5.6

2.7

5.8

6.1

Conceptual execution of a MapReduce program. Adapted from [16]. 10
MapReduce job execution abstraction in the presented design. 19

The Task class - the main extension point for implementing MapReduce jobs 22

The IMapReduceBroadcastReceiver interface - the actions to be taken when
a broadcast is received on anode.o 23

The Job class - aggregation and starting point of any MapReduce execution. 24

PeerMapReduce - a user’s connection to the overlay network. It provides
DHT-like put() and get() methods as well as direct access to an instance of
TomP2P’s Peer class to allow for the establishment of an overlay network
and the submission of broadcast messages. 24

SerializeUtils provides methods to serialise and deserialise both class files
and Java objects. 25

Task chaining. The order of task execution is enforced by specifying the
previousld of a task to be the currentld of the preceeding task. StartTask
has no previousld (thus, null), which is required to specify a Job’s starting
point. 26

Although both B and C contain data item D1 requested by A, only one
replication needs to be queried and retrieved to start execution on A. How-
ever, the execution is finished and a broadcast sent quicker than the second
GET request arrives at C. Thus, C would ignore the broadcast and add a
listener to the connection to A for data item D1 although the execution of
D1 was already finished, see the descriptions in Section 5.5.2. 30

An example where GET requests neutralise each other, leading to the un-
desired effect that data item D1 is only executed once instead of twice as
the user intended. See the corresponding descriptions for a detailed expla-
nation in Section 5.5.2. Lo 32

Overall average traffic per node for 3 - 6 connected machines. 37

o7

o8

6.2

6.3

6.4
6.5

LIST OF FIGURES

PUT requests increase with every node added to the execution. However,
the maximal number of PUT requests (74) is never reached, and the curve
flattens out, presumably approximating this maximum value progressively

with every additional node. 0oL 38
GET request messages and number of granted (OK) and denied GET re-

quests for 3to 6 nodes. 39
GET requests and BROADCAST messages for 3 to 6 nodes. 40

Cumulated overall per-node traffic in MiB for one and two job executions
of same split and file sizes as presented in Table 6.2, plotted against each
other. See Table 6.3 for the actual values. 42

List of Tables

2.1 Summary of important dimensions from reviewed literature.

6.1 Hardware used during experimentations. # indicates which computers are
participating in the executions: machines 1 - 3 are used for 3 node exe-
cutions, 1 - 4 for 4, 1 - 5 for 5, and 1 - 6 for 6. Win denotes Microsoft
Windows, U Ubuntu.

6.2 Used datasets for evaluating the traffic of one and two jobs. Each configu-
ration is run for 3, 4, 5, and 6 nodes, resulting in 16 data points.

6.3 Mean overall traffic per node for the execution of same dataset sizes for one
and two jobs. In the Config. column, A to D refer to column # in Table 6.2,
and 3 to 6 specify the number of nodes. A indicates the difference in traffic
sizes between one and two jobs.o

C.1 Overall mean traffic per node decomposed into different message types for
3 to 6 nodes in both MiB and number of messages sent. ¢ denotes the
standard deviation.

39

60

LIST OF TABLES

Appendix A

Exemplary Job Submission

Listing A.1: Simplified Java code to define a MapReduce job

// Instantiate all tasks and broadcast receiver

Task startTask = new StartTask(null, NumberUtils.next ());

Task mapTask = new MapTask(startTask.currentId(), NumberUtils.next());

Task reduceTask = new ReduceTask(mapTask.currentId(), NumberUtils.next());

Task printTask = new PrintTask(reduceTask.currentId(), NumberUtils.next());

Task shutdownTask = new ShutdownTask(writeTask.currentId(), NumberUtils.next());
IMapReduceBroadcastReceiver receiver = new ExampleJobBroadcastReceiver ();

// Add all tasks and broadcast receiver to a new job
Job job = new Job();

job.addTask(startTask);

job.addTask (mapTask) ;

job.addTask (reduceTask) ;

job.addTask(printTask);

job.addTask (shutdownTask);

job.addBroadcastReceiver (receiver);

// Define the input for the first locally ezecuted task (StartTask)
NavigableMap <Number640, Data> input = new TreeMap<>();

input.put (NumberUtils.allSameKey ("DATAFILEPATH"), new Data(filesPath));
input.put (NumberUtils.allSameKey ("NUMBEROFFILES"), new Data(nr0OfFiles));

// Connect to the overlay
PeerBuilder peerBuilder = ... //User configuration of the peer

PeerMapReduce peerMapReduce = new PeerMapReduce (peerBuilder);

// Start a MapReduce job
job.start (input, peerMapReduce);

61

62

APPENDIX A. EXEMPLARY JOB SUBMISSION

Appendix B

Initial Experiments

Before the actual experiments, runs were conducted for a multitude of file and split sizes,
which are depicted below. These charts show average per-node traffic and execution times
for 1 to 4 nodes. Traffic was captured using Wireshark [11] instead of the Decoder-class-
parsed output used in the final evaluation and thus, covers not only TCP/UDP traffic
but also IP headers etc. Furthermore, network access was provided through a wireless
mobile phone hot spot (Samsung Galaxy S6 edge), which is noticeably slower than the
used Ethernet link in the final evaluation. An increase in traffic sizes could be observed
when adding more nodes, which could be explained by the problematic eventual consis-
tency features outlined in Section 5.5.2. Furthermore, stability could not be guaranteed
always and the prototype often halted mid-execution for the same reasons. This led to
adaptations like the user-defined waiting time and majority voting scheme, which allowed
the whole system to run much more stable and with fewer unintended additional execu-
tions as explained in Section 5.5.2; too.

Execution Times for Different File and Split Sizes for 1 PC

6

: II II II
2

, sn mm mum HN mB [| II II II

512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File
MB 2MB 4MB 8MB 12MB 16MB

m avg per node execution time (s) u Qverall execution time (s)

63

64

250
200
150
100

50

450
400
350
300
250
200
150
100

50

500
450
400
350
300
250
200
150
100

50

APPENDIX B. INITIAL EXPERIMENTS

Traffic and Execution Times for Different File and Split Sizes for 2 PCs

512kb 1File 512kb 1MB 1File 512kb 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File
1MB 2MB 4MB 8MB 12MB 16MB
mavg per node execution time (s) m Overall execution time (s) mavg nade Traffic (MB) wavg packets captured (in 1000)

Traffic and Execution Times for Different File and Split Sizes for 3 PCs

512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1File 512kb 1MB 1File
1MB 2MB 4MB 8MB 12MB 16MB
mayg per node execution time (s) = Qverall execution time (s) = avg node Traffic (MB) = avg packets captured (in 1000)

Traffic and Execution Times for Different File and Split Sizes for 4 PCs

§512kb IMB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1MB 1File 512kb 1File

MB 2MB 4MB 8MB 12MB 16MB

m avg per node execution time (s) = Qverall execution time (s) = avg node Traffic (MB) = avg packets captured (in 1000)

Appendix C

Overall Mean Traffic Per Node

The following table features overall mean traffic per node, decomposed into different
message types for 3 to 6 nodes as both MiB values and number of messages sent. GET
OK only features message counts, as OK response messages could only be extracted as
a combination of PUT and GET. Thus, sizes in MiB could not be reliably differentiated
between the two response types. However, as all PUT requests are expected to result in
an OK PUT reply, the number of GET OK messages could be estimated by subtracting
the PUT request messages from the overall OK messages for PUT and GET.

65

66

APPENDIX C. OVERALL MEAN TRAFFIC PER NODE

H MiB H #Messages ‘
Msg. Type ‘ #Nodes H 3 4 5 6 H 3 4 ‘ 5 6 ‘
mean 46.24 | 52.02 | 55.49 | 57.78 || 49.33 | 55.50 | 59.20 | 61.64
PUT median 46.24 | 52.02 | 55.49 | 57.80 || 49.33 | 55.50 | 59.20 | 61.67
re- o 0.00 | 0.00 | 0.00 | 0.05 0.00 0.00 0.00 0.06
quests min 46.24 | 52.02 | 55.49 | 57.63 || 49.33 | 55.50 | 59.20 | 61.50
max 46.24 | 52.02 | 55.49 | 57.80 || 49.33 | 55.50 | 59.20 | 61.67
mean 7.05 | 9.48 | 11.76 | 13.99 || 81.33 | 109.50 | 136.00 | 161.42
GET median 7.05 | 9.48 | 11.75 | 14.02 || 81.33 | 109.50 | 136.00 | 161.67
re- o 0.01 | 0.02 | 0.02 | 0.07 0.00 0.00 0.00 0.77
quests min 7.04 | 9.45 | 11.74 | 13.74 || 81.33 | 109.50 | 136.00 | 158.33
max 7.06 | 9.51 | 11.79 | 14.03 || 81.33 | 109.50 | 136.00 | 161.67
mean 5.16 | 7.43 | 9.46 | 11.67 || 60.37 | 87.16 | 111.16 | 136.75
median 5.18 | 7.51 | 9.30 | 11.67 || 60.67 | 88.25 | 109.20 | 137.00
Broadcast | o 0.29 | 0.34 | 0.31 | 0.20 3.42 3.90 3.57 2.29
min 4.70 | 6.82 | 9.16 | 11.33 || 55.00 | 80.25 | 107.80 | 133.00
max 5.52 | 7.99 | 10.05 | 12.02 || 64.67 | 94.00 | 118.20 | 140.83
mean 33.13 | 36.31 | 37.95 | 39.82 || 114.67 | 128.64 | 137.08 | 142.68
PUT/ median 33.13 | 36.07 | 37.84 | 39.73 || 114.67 | 128.75 | 137.20 | 142.67
GET o 0.00 | 0.55 | 0.80 | 0.81 0.00 0.23 0.30 0.33
OK min 33.13 | 35.82 | 36.68 | 38.13 || 114.67 | 128.25 | 136.60 | 142.00
max 33.13 | 37.27 | 39.75 | 41.41 || 114.67 | 129.00 | 137.60 | 143.33
mean 65.33 | 73.14 | 77.88 | 81.04
median 65.33 | 73.25 | 78.00 | 81.00
SIEéT o 0.00 0.23 0.30 0.31
min 65.33 | 72.75 | 77.40 | 80.33
max 65.33 | 73.50 | 78.40 | 81.67
mean 0.00 | 0.00 | 0.00 | 0.00 16.00 | 36.00 | 57.62 | 79.75
GET median 0.00 | 0.00 | 0.00 | 0.00 16.00 | 36.00 | 57.60 | 80.00
DE- o 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00 0.06 0.76
NIED min 0.00 | 0.00 | 0.00 | 0.00 16.00 | 36.00 | 57.60 | 77.00
max 0.00 | 0.00 | 0.00 | 0.00 16.00 | 36.00 | 57.80 | 80.33
PUT/ mean 0.00 | 0.00 | 0.00 | 0.00 0.00 0.36 0.50 0.62
GET median 0.00 | 0.00 | 0.00 | 0.00 0.00 0.25 0.40 0.50
NOT o 0.00 | 0.00 | 0.00 | 0.00 0.00 0.23 0.32 0.37
FOUND min 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00
max 0.00 | 0.00 | 0.00 | 0.00 0.00 0.75 1.00 1.50

Table C.1: Overall mean traffic per node decomposed into different message types for 3
to 6 nodes in both MiB and number of messages sent. ¢ denotes the standard deviation.

