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Abstract

Voting is one of the cornerstones of any democracy. With Electronic Voting (E-Voting),
the Swiss confederation wants to advance Switzerland’s voting and electoral system to the
digital age. One of the main targets of its e-government initiative is the development of a
Remote E-Voting (REV) system, with which voters can easily vote from their own devices
via the internet. However, this electronic channel, which is proposed as an additional
option to in-person and postal voting, poses unique challenges. Digitizing the human right
of ballot secrecy to REV systems is not straightforward. Indeed, enabling the verifiability
required in order for any voter to check that their vote was counted, is in direct opposition
to privacy. Blockchains (BC) promise to bring many of the properties we look for in a
voting system: transparency, resilience, tamper-proof, and decentralization. Switzerland,
with its federalistic structure, provides a perfect political analogy for implementing a REV
system, where trust is distributed among multiple authorities. Canton and municipalities
can collaborate to establish a network running the voting software, removing the need to
trust any single entity with the correctness of the vote – it would provide transparency to
voters and resilience against voting suppression.

This thesis conducts a security analysis of the Provotum REV system in order to assess
risks and threats to the current design. Based on the results of the security audit, and
improved design for a fully decentralized voting system is proposed. The new architecture
brings an advanced notion of voter privacy to BC-based voting: Receipt-Freeness – a mea-
sure against vote selling. By introducing a new authority called Randomizer, the voter
can not prove to a vote buyer how she voted while maintaining the ability to verify the
correctness of her vote. Finally, the new scheme is analysed proving that Provotum 3.0
achieves Receipt-Freeness while maintaining Ballot-Secrecy and verifiability. The evalua-
tion includes a scalability analysis, showing any cryptographic material can be generated
and verified in linear time, proving that the system can scale to nation-wide elections and
votes.
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Zusammenfassung

Die Stimmabgabe ist ein wichtiger Eckpfeiler jeder Demokratie. Mit dem elektronischen
Stimmkanal (E-Voting) will die Eidgenossenschaft die Schweizer Kultur und Tradition
der politischen Rechte in das digitale Zeitalter bringen. Einer der Kernpunkte der schwei-
zerischen E-Government-Initiative ist die Entwicklung eines Systems zur elektronischen
Stimmabgabe, mit welchem die Stimmberechtigten bequem von ihren eigenen Geräten
aus über das Internet abstimmen können. Dieser elektronische Kanal, der als zusätzliche
Option zur persönlichen und postalischen Stimmabgabe vorgeschlagen wird, birgt jedoch
einzigartige Herausforderungen. Es ist nicht einfach, das Menschenrecht auf Privatsphäre
in Systeme zur elektronischen Stimmabgabe einzubringen. In der Tat steht die Ermögli-
chung der Verifizierbarkeit, die erforderlich ist, damit jeder Wähler überprüfen kann, ob
seine Stimme gezählt wurde, in direktem Widerspruch zur Privatsphäre. Im Laufe der
Jahre haben viele Fortschritte in der Kryptographie Kompromisse zwischen Datenschutz
und Verifizierbarkeit vorgeschlagen. Ein Beispiel dieses Fortschritts sind Blockchains, wel-
che der Eigenschaften beinhalten, nacwelche für ein Wahlsystem nötig sind: Transparenz,
Belastbarkeit, Manipulationssicherheit und Dezentralisierung. Die Schweiz, mit ihrer fö-
deralistischen Struktur, bietet eine perfekte politische Grundlage für die Einführung eines
E-Voting Systems, bei welchem das Vertrauen auf mehrere politischen Ebenen verteilt ist.
Kanton und Gemeinden können zusammenarbeiten, um ein Netzwerk aufzubauen, das die
Abstimmungssoftware betreibt. Ein solches System würde es überflüssig machen, einer
einzigen Instanz die Korrektheit der Abstimmung anzuvertrauen. Es würde den Wählern
Transparenz und Widerstandsfähigkeit gegen die Unterdrückung der Stimmabgabe bieten.

In dieser Arbeit wird zunächst eine Sicherheitsanalyse des aktuellen Zustands des Provotum-
Prototyps durchgeführt, um mögliche Verbesserungsmöglichkeiten aufzuzeigen. Basierend
auf den Ergebnissen dieser Prüfung wird ein Entwurf für ein dezentrales Wahlsystem
vorgeschlagen. Die neue Architektur bringt einen fortgeschrittenen Begriff des Wähler-
geheimnisses zur blockchain-basierten Abstimmung: Receipt-Freeness – eine Maßnahme
gegen den Verkauf von Stimmen.Durch die Einführung einer neuen Autorität namens
Randomizer ist der Wähler nicht in der Lage, einem Stimmenkäufer zu beweisen, wie er
gewählt hat, während er gleichzeitig die Möglichkeit behält, die Richtigkeit seiner Stim-
me zu überprüfen. Schließlich wird eine Bewertung der Architektur in Bezug auf die
Skalierbarkeit vorgelegt, die zeigt, dass jegliches kryptographisches Material in linearer
Zeit generiert und verifiziert werden kann, was beweist, dass das System für landesweite
Wahlen und Abstimmungen skalierbar ist.
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Chapter 1

Introduction

“Enabling equal participation for all and strengthening solidarity”. With these words, the
Swiss federal government opens its statement on the critical objectives of its digitization
strategy called “Digital Switzerland” [1]. One of its main fields of action is enabling elec-
tronic channels for political involvement, which includes Remote Electronic Voting (REV)
systems. Following the “security before speed” principle, Switzerland has a long-standing
history of testing electronic voting, dating back over 15 years [2]. REV systems pose the
unique challenge of allowing citizens to express their votes remotely, from an uncontrolled
environment [2]. Legal and technical requirements increase the difficulty in digitizing elec-
tions and referenda (e.g., privacy and verifiability properties are in direct opposition to
one another). While most people view the introduction of a REV system favorably [3],
there is also a minority that sees it as a threat and wants to see it forbidden in Switzerland
until it reaches a level of security comparable to that of postal voting [4]. REV presents
beneficial properties that are absent in a traditional Remote Postal Voting (RPV) sys-
tem. For instance, the prevention of invalid votes, the speed of tallying results, various
accessibility improvements, convenience and increasing degrees of verifiability [2].

Since its rise to popularity, Blockchains (BC) have been described as the missing key
necessary to implement REV in a transparent, resilient, tamper-proof manner, and which
requires no trust in a single entity. Indeed, BCs offer many of these properties, empowering
voters to vote and verify the voting procedure themselves [5]. However, merely shifting
voting over a BC is not enough to secure the process. Hosting an election or referendum
introduces new attack vectors and risks which have to be assessed before deploying it on
a large scale.

The CSG@Ifi follows various approaches to research on BC-based REV [6]. One of these
approaches is the Provotum project [5, 7, 8], which designed and implemented a BC-based
REV system formed on a Proof-of-Authority BC as a Public Bulletin Board, which is the
central element of any REV system. Provotum 1.0 was first developed in 2018 and resulted
in a second version prototyped in 2020 to improve on limitations of the first version.
However, the authors of Provotum 2.0 identified limitations that need to be mitigated
before such a system can be used in a real-world scenario [9]. For instance, the hard key
size limitation on Ethereum’s uint256, the Identity Management difficulties seen in the
provisioning, and funding of Ethereum accounts allowed to vote, mean that the system

1



2 CHAPTER 1. INTRODUCTION

in its current form cannot be employed in any real world setting due to basic security
concerns. Potential future work was also identified, such as, possible enhancements of
ballot privacy by employing onion routing.

Thus, this work proposes Provotum 3.0, or ProvotumRF, an evolution of Provotum 2.0,
which takes the lessons learned over the last 20 years to propose a scheme which achieves
Receipt-Freeness on a public permissioned network.

1.1 Description of Work

This thesis’s overarching goal is to tackle the limitations faced in the current state of
Provotum 2.0. It comprises the possibility to design a new voting protocol and software
architectures, requiring the exploration of novel ways to implement such a BC-based
REV system. However, to propose a more suitable system or approach, the goal entails
a security analysis of Provotum 2.0 to determine risks to the system, which would add
to the already known limitations. The newly designed system will be evaluated in terms
of privacy and verifiability, as well as usability and scalability. More concretely, this
includes evaluating if Provotum 3.0 can be applied in a real-world election scenario, being
developed and deployed using modern software and hardware tools, while retaining its
properties.

1.2 Thesis Outline

This thesis is structured as follows. Chapter 3 presents the relevant concepts in cryptog-
raphy and voting system properties needed in order to understand the rest of the thesis.
Related work is discussed in Chapter 4. Chapter 5 conducts a security analysis of Provo-
tum 2.0 to enumerate attack vectors and limitations. Following the security analysis, in
Chapter 6 improvements on the architecture of Provotum 2.0 are proposed. Chapter 7
describes the implementation details of the Provotum 3.0 prototype. Chapter 8 evaluates
the proposed design and prototype in terms of privacy and verifiability, as well as scala-
bility. Finally, Chapter 9 concludes this thesis, discussing this thesis’ achievements and
possible future work.



Chapter 2

Cryptographic Primitives

Electronic voting systems make used of a wide range of cryptographic tools (primitives).
The adoption of these algorithms varies from protecting the secrecy of the vote, to message
authentication. This section introduces the most relevant concepts and algorithms needed
in order to understand the theoretical arguments of this work.

2.1 Hash functions

A hash function accepts a variable-size message M and produces a fixed sized output,
called a digest or also fingerprint [10]. A secure hash function H must possess the following
properties:

• H can be applied to block of data of any size.

• H produces fixed sized digests.

• H(x) must be efficient to compute.

• Pre-image resistance: for any h = H(x), it must be infeasible to find x.

• Second pre-image resistance or weak collision resistance: for any x, it must be
infeasible to find y, where y 6= x, s.t. H(x) = H(y).

• (Strong) collision resistance: it must be infeasible to find any pair (x, y), s.t. H(x) =
H(y).

In general, cryptographic hash functions must be efficient to compute for a given message,
but inverting them should not, which gives them their “one-way” property. Such a secure
cryptographic hash function can be employed as a primitive for a variety of applications,
e.g., message authentication codes, digital signatures, or as a replacement for a random
oracle in non-interactive proofs. Common implementations to electronic voting are com-
mitments schemes, privacy-preserving electronic signature protocols, and non-interactive
ballot validity proofs.

3



4 CHAPTER 2. CRYPTOGRAPHIC PRIMITIVES

2.2 Public-Key Cryptography

Public-key cryptography is asymmetric, meaning that distinct keys are used for encryp-
tion and decryption of messages, or for signing and verifying digital signatures [10]. While
traditional shared-key cryptography mostly relies on manipulation of bit patterns, public-
key cryptography relies on mathematical functions and the intractability of certain classes
of problems, such as the discrete logarithm or the prime factorization problem [10]. A
public-key scheme consists of the following components: (i) a plaintext m, (ii) an encryp-
tion algorithm E, (iii) a public/private key pair (pk, sk), (iv) an encrypted ciphertext c,
and (v) a decryption algorithm D. It should be infeasible to derive the private key from
the public key. The subsequent relation ties the components together:

m = D(c, sk) = D(E(m, pk), sk) (2.1)

Generally, public-key crypto systems require more computations than their symmetric
counterparts [10]. For this reason, public-key cryptography is usually applied in scenarios
were the messages to encrypt (or sign) tend to be relatively small, such as digital signatures
and key exchanges. Examples are RSA [11], Diffie-Hellmann Key Exchange [12], and the
ElGamal crypto system [13], described in Section 2.5.

2.2.1 Digital Signatures

NIST defines a digital signature as “The result of a cryptographic transformation of data
that [. . . ] provides a mechanism for verifying origin authentication, data integrity and
signatory non-repudiation” [14]. Digital signatures are cryptographic schemes giving a
means to demonstrate that a message comes from a specific known sender, and that
the message was not manipulated along the way. Whereas encryption schemes provide
protection against eavesdropping, signatures deliver authentication and integrity.

Definition 2.2.1 (Digital Signature Scheme) A digital signature scheme is a triple
of algorithms (KeyGen, Sign, Verify), where sk is the signing key, and vk is the veri-
fication key [15], s.t.

(sk, vk) = KeyGen()

σ = Sign(sk,m)

b = Verify(vk,m, σ)

(2.2)

A signature is valid if b = 1.
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A concrete instance of this algorithm is given by the RSA signature scheme [11].

KeyGen: choose two random, distinct prime numbers p, q and compute

N = pq

φ(N) = (p− 1)(q − 1)
(2.3)

select e, s.t. e is coprime to φ(N) and e < φ(N)

d = e−1 (mod φ(N))

(sk, vk) = ((N, d), (N, e))

Sign: given any hash function H, compute the signature σ of the message m

σ = H(m)d (mod N) (2.4)

Verify: verify the signature by computing

σe
!

= H(m) (mod N) (2.5)

2.2.2 Decisional Diffie-Hellmann Assumption

The decisional Diffie-Hellmann Assumption is an assumption on the computational in-
tractability about solving a discrete logarithm in a cyclic group.

Definition 2.2.2 (Decisional Diffie-Hellmann Assumption) Given a cyclic group
G of prime order q and generator g, the DDH assumption states that for any triple
(a, b, c) ∈R Zq, the following triple cannot be distinguished by a polynomially bounded
Turing machine: (ga, gb, bc), (ga, gb, gab), with bound n = log(q). Essentially, this means
that the value gab ∈R Gq cannot be distinguished from any other c ∈R Gq [16].

2.3 Blind Signatures

A blind signature is a cryptographic scheme based on public cryptography, first proposed
by Chaum [17]. It enables a user to request a digital signature of a message, while
keeping its content secret to the signer. In practice, this can be employed to ensure that a
signer cannot trace the usage of its signature. The common analogy adopted to describe
this process is that of using an envelope, containing a message written on carbon paper
which needs to be signed. The user seals the envelope and gives it to a notary for signing,
transferring the signature from the envelope to the carbon paper. The user can afterwards
open the envelope, revealing the signed message.
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Blind signatures have often been proposed in literature as a mechanism to prove to voting
systems the legitimacy of a voter casting a ballot. In most schemes proposed, the voter
prepares a ballot, blinds it, authenticates to the authority, and sends the blind ballot. The
authority signs it and returns it to the voter. The voter can now unblind the payload,
revealing the signature. The voter then casts the ballot in plain text with the signature,
which the receiving party can verify as a normal digital signature.

Definition 2.3.1 (RSA Blind Signature) An RSA blind signature is defined as a tu-
ple of algorithms (KeyGen, Blind, Sign, Unblind, Verify) [17].

KeyGen: obtain (sk, vk), as described in Equation 2.3

(sk, vk) = ((N, d), (N, e)) (2.6)

Blind: choose a random, blinding factor r ∈R ZN , s.t. r is coprime to N

(b, r) = (H(m) · re, r) (mod N), r ∈R Z∗N (2.7)

Sign: compute blind signature σ′, using the standard RSA signature (Equation 2.4)

σ′ = bd (mod N) (2.8)

Unblind: unblind it to reveal the signature σ

σ =
σ′

r
(mod N) (2.9)

Verify: verify using the standard RSA signature verification (Equation 2.5)

σe
!

= H(m) (mod N) (2.10)

2.4 Homomorphic encryption

Homomorphic encryption schemes are a form of encryption, with the property of being
able to perform operations on a ciphertext, without the need of decrypting it first.

In electronic voting, this is often used in order to sum up votes for a candidate, without
decrypting the individual votes, providing privacy to voters.

This can be formulated as

∀ m1,m2 ∈M, E[m1 ⊕m2] = E[m1]⊗ E[m2], M message space (2.11)
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Homomorphic schemes are categorized based on the degree of homomorphism they submit:
i.e., a single, specific operation, or arbitrary operations. Examples of known schemes
which provide partial homomorphism under a single operation are ElGamal [13] (widely
used in electronic voting), RSA [11], and the Pailler crypto system [18]. This thesis,
follows in the step of many other REV schemes proposed in literature (such as [19, 20,
21]), using ElGamal.

2.5 ElGamal Cryptosystem

ElGamal is an asymmetric encryption scheme, proposed by Taher ElGamal [13]. It draws
its security on the basis of the DDH assumption (Definition 2.2.2): the hardness of com-
puting discrete logarithms.

Definition 2.5.1 (Diffie-Hellmann group) A Diffie-Hellmann group is a group G ⊂
Z∗p of prime order q, generator g, with p, q primes and (p− 1)/2 = q. The values (p, q, g)
are public [15].

These groups have been standardized in RFC [22] and are readily available for key gener-
ation.

Definition 2.5.2 (ElGamal Encryption) The ElGamal scheme defines a tuple of algo-
rithms (KeyGen, Encrypt, Decrypt), where the message- and ciphertext-space are defined
over a Diffie-Hellmann group G of prime order q and generator g [13].

KeyGen: choose or obtain parameters (p, q, g). Pick sk at random from Zq and compute:

pk = gsk (mod p) (2.12)

where pk is the public-key and sk the private-key.

Encrypt: choose a random nonce r ∈ Zq. Encrypt message m ∈ Zp by computing

E[m] = (c, d) = (gr, m · pkr) (mod p) (2.13)

where the pair (c, d) is the ciphertext.

Decrypt: compute

m =
d

csk
(mod p) (2.14)
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Multiplicative Homomorphism The scheme, as defined in Equation 2.11, is homo-
morphic over (G, ·). For a simple proof, given two messages m1, m2 ∈ G:

E[m1] · E[m2] = (gr1 , m1 · pkr1) · (gr2 , m2 · pkr2)
= (gr1+r2 , m1 ·m2 · pkr1+r2)

= (gr, (m1 ·m2) · pkr), r = r1 + r2

= E[m1 ·m2]

(2.15)

In order to turn this scheme into something useful for the purpose of counting votes, we
need it to be homomorphic over (G,+). We replace the Encrypt (Equation 2.13) and
Decrypt (Equation 2.14) functions as follows:

(c, d) = (gr, gm · pkr) (mod p) (2.16)

and

gm =
d

csk
(mod p) (2.17)

Determining m from Equation 2.17 involves solving a discrete logarithm. However, due to
the fact that the message space M in e-voting is usually small and bound to the amount
of voters, this can be done quickly by naively bruteforcing it with a runtime of O(n).
Alternatively, an algorithm such as Baby-step giant-step [23] can be used, which has a
runtime of O(

√
n).

Additive Homomorphism Showing that the scheme is now additively homomorphic
is simple:

E[m1] + E[m2] = (gr1 , gm1 · pkr1) · (gr2 , gm2 · pkr2)
= (gr1+r2 , gm1 · gm2 · pkr1+r2)

= (gr, gm1+m2 · pkr), r = r1 + r2

= E[m1 +m2]

(2.18)

With this construction, we can also define the multiplication of a scalar k with a ciphertext

k ⊗ E[m] = E[m]k = (gr, gm · pkr)k

= (grk, gmk · pkrk)
= (gr

′
, gmk · pkr′), r′ = rk

= E[km]

(2.19)

Security Properties To any observer, including a voter who encrypts a chosen plain-
text m, the scheme is IND-CPA, that is indistinguishable in a chosen-plaintext attack
scenario [15], considering that the message m is multiplied with a uniformly random
value pkr. Thus, two ciphertexts cannot be correlated, even if the original plaintext mes-
sages are the same. Additionally, given the homomorphic property, the scheme is by
construction malleable.
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2.6 Distributed Key Generation and Cooperative De-

cryption

Distributed Key Generation (DKG) and Threshold encryption are techniques that can
be used to allow multiple authorities to participate in the creation of a key pair [24, 25].
This opens up the possibility of having public crypto systems, without the necessity to
centralize the ability of decrypting a message to a single entity. Instead, a threshold
of authorities are necessary in order to decrypt a message encrypted with the public-key.
While threshold encryption allows t ≤ N authorities to collaboratively decrypt a message,

in the following DKG scheme for ElGamal all N authorities will be needed, i.e., t
!

= N .
Such a scheme is employed in both Provotum 2.0 [7], as well as in the system presented
in this thesis.

Distributed Key Generation Before the key generation can start, the N authori-
ties need to agree on the encryption parameters (p, g, q). This step can be done pub-
licly. Every authority creates an ElGamal key pair (pki, ski), i ∈ {1, N}, as described in
Definition 2.5.2. The public-keys are published in order to create the common public-key.

pk =
N∏
i=1

pki (mod p) (2.20)

Encryption Any party which wishes to encrypt a message can do so, following the
ElGamal scheme as presented in Definition 2.5.2 using the key computed in Equation 2.20.

Decryption Decryption requires all N authorities to collaborate. First, each authority
decrypts the ciphertext e = (c, d) = E[m, pk], using the secret-key ski, producing a
decrypted share di. This is achieved by applying a different algorithm as the one discussed
previously.

di = cski (mod p) (2.21)

The decrypted share alone does not yet reveal the plaintext, nor does it convey any
information useful for cryptanalysis. Afterwards, all N decrypted shares di are combined
to reveal the plaintext m.

m = c2 · (
N∏
i=1

di)
−1 (mod p) (2.22)

Due to the malleability of the ElGamal scheme, it is possible for a malicious authority to
return undetected any value as its decrypted share di. For this reason, a zero-knowledge
proof is usually attached to prove that a share was decrypted honestly, without having to
reveal the authority’s secret-key ski (Section 2.7).
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2.7 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKP) are a technique with which a prover can demonstrate to a
verifier knowledge about a secret, without having to leak the secret itself [26, 27].

A ZKP must satisfy the following three properties [26]:

1. Completeness: if the statement is true, the honest verifier will accept it.

2. Soundness: if the statement is false, it is not possible to convince an honest verifier
that the statement is true.

3. Zero-knowledge: no malicious verifier can learn anything about the secret from
the proof, except for its correctness.

It is important to note, that a ZKP provides probabilistic guarantees about its soundness:
i.e., the probability that a malicious prover can craft a proof for a false statement that
will be accepted by an honest verifier, is negligible, but non-zero. In E-Voting systems,
ZKP can be used to determine that a ballot is valid without leaking the contents of a
vote, or to test the correctness of a decryption without revealing the private-key used.

Prover Verifier

commitment

challenge

response

Figure 2.1: Σ proof structure

There are essentially two types of ZKP: interactive and non-interactive zero-knowledge
proofs (NIZKP). Interactive proofs are usually formulated as a challenge-response game,
in which the prover commits to a statement, the verifier sends a challenge to the prover,
and the prover responds (Figure 2.1). The commitments, together with the response,
can be used to verify the statement to prove. Such three-move protocols are called Σ
proofs [26, 27]. Non-interactive proofs do not require interaction and can be generated by
the prover alone. In the same way, the verifier can verify the proofs without requiring the
voter. This makes them ideal for generating and publicly publishing in a fire-and-forget
way. One common technique to turn an interactive protocol into a non-interactive one is
via the Fiat-Shamir Heuristic.
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2.7.1 Fiat-Shamir Heuristic

The Fiat-Shamir Heuristic [28] is a technique to transform an interactive proof of knowl-
edge into a non-interactive one, by replacing the random verifier’s challenge with a hash of
the algorithm’s transcript, which serves as the random oracle – the source of uniform ran-
domness. Non-interactive zero-knowledge proofs (NIZKP) can then easily be published,
allowing anyone to verify a statement, without information leakage.

Different protocols have made use of the Fiat-Shamir Heuristic to reduce communication
overhead in remote voting protocols. Bernhard et al. [29] identified that two distinct
applications of such heuristic exist in literature: a strong variant (sFS) and a weak one
(wFS). The strong variant hashes the commitments as well as the statement, while the
weak one only hashes the commitments. This can lead to unsound proofs in the case of
malicious provers: i.e., proofs that do not actually prove the statement, they are meant
to prove.

2.7.2 Schnorr Proof

A Schnorr Proof is a ZKP that can be used to prove knowledge of a private-key sk for a
specific public-key pk.

Definition 2.7.1 (Schnorr Proof) A Schnorr Proof [30] is a proof of knowledge of a
secret value x, such X = gx (mod p), where (g, p,X) are public values.

For a key pair (sk, pk) and public parameters p, g, q, we compute a proof of knowledge of
the secret sk using the formula in Figure 2.2.

Prover Verifier

knows sk, pk, g, p, q knows pk, g, p, q

a ∈R Zq
b = ga (mod p)

c = H(pk, b)

d = a+ c · sk (mod q)

(c, d) compute

b = gd/pkc (mod p)

c′ = hash(pk, b)

verify

c
!

= c′

gd
!

= b · pkc′ (mod p)

Figure 2.2: Schnorr non-interactive proof
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2.7.3 Chaum-Pedersen Proof

A Chaum-Pedersen Proof can be used to prove the equality of two discrete logarithm and
can be used to prove the decryption of a ciphertext e with a private-key sk, congruent to
the public-key pk.

For a given ciphertext e = (e1, e2) encrypted using the public-key pk and sk, p, g, q, we
compute a Chaum-Pedersen Proof as shown in Figure 2.3.

Prover Verifier

knows sk

r ∈R Zq
u = cr (mod p)

v = gr (mod p)

C = H(pk, e1, e2, u, v)

s = r + C · sk (mod q)

d = esk1 (mod p)
d, u, v, s C = H(pk, e1, e2, u, v)

verify

cs
!

= u · dC (mod p)

gs
!

= v · pkC (mod p)

Figure 2.3: Chaum-Pedersen proof

2.7.4 Disjunctive Chaum-Pedersen Proof

A disjunctive Chaum-Pedersen Proof (DCP) is used to prove the validity of an encrypted
ballot. Due to the indistinguishability property of ElGamal, once a ballot e has been
encrypted, no one can tell whether e encrypts a 0, 1, or even a −1. Thus, we apply the
disjunctive Chaum-Pedersen ZKP to prove that the ballot encrypts a value v ∈ {0, 1}.
We do this by proving that the voter has either encrypted a 0, OR a 1, using two Chaum-
Pedersen proofs. The protocol in Figure 2.4 presents the non-interactive proof generation
and verification protocol.

2.7.5 Designated-Verifier Proofs

A designated-verifier proof, is a type of knowledge proof which can be verified by a specific
(designated) entity, but when transferred to third party, it makes no sense [31]. The proof
can be generated using an OR-combination of the statement we wish to prove, and the
proof of knowledge of the private-key of the designed verifier. As only the verifier knows
the private-key, the verifier knows the statement to be true. Intuitively, this can be
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Voter Verifier

knows v ∈ {0, 1}, α ∈R Zq knows e = (c, d)

s.t. e = E(v, α) = (c, d)

λ = 1− v
cλ, rλ, r

′
v ∈R Zq

aλ = grλ/ccλ (mod p)

bλ = pkrλ/(d/gλ)cλ (mod p)

av = gr
′
v (mod p)

bv = pkr
′
v (mod p)

C = H(pk, a0, a1, b0, b1, e)

cv = C + cλ (mod q)

rv = r′v + cv · α (mod p)

π = (a0, a1, b0, b1, c0, c1, r0, r1) π for i ∈ {0, 1}

gri
!

= ai · cci (mod p)

hri
!

= bi · (d/gi)ci (mod p)

C = H(pk, a0, a1, b0, b1, e)

c0 + c1
!

= C (mod q)

Figure 2.4: Disjunctive Chaum-Pedersen proof

formulated as “Instead of proving Θ, Alice will prove the statement “Either Θ is true, or
I am Bob”” [31]. If Bob receives this proof, it will be obvious to him that the statement
Θ must be true (or that his key was compromised). However, if he sends the proof to
Charlie, Charlie will not be able to distinguish whether the statement is true, or if Bob is
simply proving to be himself. The application of designated-verifier proofs for Provotom
is explained in Section 6.2.4.

2.7.6 Divertible Proofs

Similarly to blind signatures, divertible proofs can be used to generate new proofs using
existing ones, in such a way that the new one cannot be distinguished by any other proof
– not even the original one [32].

In divertible proof schemes, an intermediary party is introduced between prover and ver-
ifier – posing as the verifier to the prover, and as the prover to the verifier – as a sort of
man in the middle (MITM). In the context of this work and that of [33, 34], it is used
in order to allow an authority to generate a new DCP for a ballot, which was modified
without leaking the vote or the nonce used for the encryption.

In the original paper [32], entire classes of divertible proofs are presented. For this work,
we will define a divertible interactive DCP algorithm in Section 6.2.4.



14 CHAPTER 2. CRYPTOGRAPHIC PRIMITIVES



Chapter 3

Background

This chapter focuses on theoretical concepts central to REV systems. In the first part, the
main security properties of e-voting systems are discussed. In the second part, blockchains
are introduced and it is shown how they can be applied to the context of e-voting systems.

3.1 Remote Electronic Voting Properties

Various desirable properties for voting systems have been defined in literature over the
years, as can be seen in Figure 3.1. Different authors tend to describe these in various
terms. For this reason, this section aims to give an overview of the terms as used in the
context of this work. Jonker et al. [35] provide a survey of desirable properties of REV
voting systems, which forms the basis of this section. These can be categorized into two
groups: privacy and verifiability.

End-to-End-

Verifiability


(E2E-V)

2004

Universal

Verifiability (UV)

1995

Individual

Verifiability (IV)

Coercion-

Resistance (CR)

2005

Receipt-

Freeness (RF)

1994

Ballot-

Secrecy (BS)

Verifiability

Privacy

1981

Figure 3.1: Overview and evolution of privacy and verifiability notions in voting sys-
tems [35].
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Privacy Vote privacy is considered a fundamental human right and is stated at article 21
of the Universal Declaration of Human Rights [36]. Intuitively, removing ballot privacy
from the voting process allows adversaries to easily coerce and/or bribe voters. Thus,
privacy is a key factor in allowing a democratic voting process. Privacy in this context is
often split into (i) Ballot-Secrecy, (ii) Receipt-Freeness, and (iii) Coercion-Resistance.

Ballot-Secrecy can be further classified in subcategories based on the degrees of privacy
and assumptions made. However, this is not handled in this work, but we consider the
following definition of Ballot-Secrecy.

Definition 3.1.1 (Ballot-Secrecy (BS)) “A voting system is private if it (and the pro-
cedures/process for using it) does not make available additional information on an indi-
vidual voter’s ballot choice(s), beyond that contained in the tally [37]” OR “A voter’s vote
is not revealed to anyone” [38].

Further refinements of this definition can be found in literature based on the trust model
or the computational power of an adversary [39, 40, 41]. Sometimes, the term Ballot
Privacy is used interchangeably as a synonym. For this thesis, only BS is used to better
distinguish it from other privacy notions. Interestingly, all early works in the field devised
systems to produce receipts, allowing voters to prove to others how they voted. Intuitively,
the ability to produce a proof of how a user voted can easily be used for coercion and vote
buying [42]. This brought about the definition of Receipt-Freeness.

Definition 3.1.2 (Receipt-Freeness (RF)) “A voter cannot gain information which
can be used to prove, to a vote-buyer, how she1 voted” [42].

Definition 3.1.3 (Coercion-Resistance (CR)) “A voter cannot interact with a co-
ercer to gain information, which can be used to prove how she voted” [35].

The core difference between Receipt-Freeness and Coercion-Resistance lies in the type of
voter. In the case of Receipt-Freeness, we consider a malicious voter who wishes to sell
her vote. For Coercion-Resistance instead it does not matter whether the voter is honest
or not. She is coerced by some entity into divulging sensitive information, such as her
vote, her credentials to vote and so on. As such Coercion-Resistance is a stronger privacy
guarantee than Receipt-Freeness.

Definition 3.1.4 (Unconditional Privacy (UP)) No information is leaked other than
what is leaked by the tally, regardless of computational or time assumptions [39].

Many voting schemes based on asymmetric encryption (e.g., mix-net and homomorphic
encryption) rely on the intractability of mathematical problems, such as the Decisional
Diffie-Hellman assumption (DDH) [16]. As such, they do not offer unconditional privacy.

1In keeping in line with other works in the field, the voter is female (Alice) and is thus referred to
with the feminine pronouns.
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Verifiability Once all votes have been cast, the system must be able to prove that
the result was tallied correctly, and that the single ballots contain the actual voters’
choices. We call this property Verifiability. Jonker et al. [35] present various definitions
of verifiability.

Definition 3.1.5 (Individual Verifiability (IV)) A voter can verify that the ballot
she cast is in the published set of “all” votes and it is unaltered [35].

Definition 3.1.6 (Universal Verifiability (UV)) Anyone can verify that the final tally
corresponds with the published set of “all” votes [35].

Definition 3.1.7 (Eligibility Verifiability) Anyone can verify that any vote in the set
of “all” votes belongs to an eligible voter, and each eligible voter voted only once [43].

Definition 3.1.8 (End-to-end Verifiability (E2E-V)) End-to-end Verifiability is ful-
filled if a voter can verify three properties [35]:

• Cast-as-Intended: “her choice was correctly denoted on the ballot by the system”.

• Recorded-as-Cast: “her ballot was received the way she cast it”.

• Counted-as-Recorded: “her ballot counts as received”.

Privacy vs Verifiability Intuitively, voter privacy and verifiability are in direct opposi-
tion to one another. Indeed, Chevallier et al. [44] have shown that a voting system cannot
achieve Unconditional Privacy and Universal Verifiability at the same time. They also
showed that Universal Verifiability and Receipt-Freeness also cannot coexist if the tran-
script of the vote depends only on public values and values known to the voter. For this
reason, REV Systems should strive to achieve a trade-off between privacy and verifiability.

Definition 3.1.9 (Software Independence) A voting system is software-independent
if an undetected change or error in its software cannot cause an undetectable change or
error in an election outcome [45].

REVs are complex system. Small errors or manipulations can lead to unpredictable
errors, which might be exploited by adversaries. As such Software Independence follows
the approach of “Verify the election results, not the voting system” [45].
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3.2 Blockchain and Public Bulletin Boards

A blockchain (BC) is an append-only, immutable, distributed database, managed by a
peer-to-peer network. The state is composed out of blocks of transactions which are
cryptographically linked together in a chain. A block is simply a data structure containing
a set of transactions and a reference to the previous block in the chain. In this sense, a BC
is essentially a reverse linked-list. In order to decide which blocks to include in the chain,
a BC defines a consensus mechanism through which the nodes of the p2p network agree on
the state of the database. Generally, all peers in the network agree on an initial state of the
system, called the genesis block. From there, each new appended block is validated and
agreed upon by the network through its consensus algorithm. Some examples of consensus
mechanisms are Proof-of-Work (PoW), Proof-of-Stake (PoS), Proof-of-Authority (PoA),
and Practical Byzantine Fault Tolerance (PBFT) [46].

There exist different types of BCs: (i) permissioned and (ii) permissionless. Permis-
sioned BCs, such as BCs built on Hyperledger Fabric2 and Substrate3, are controlled by
a single organization or consortium, which manages read and write permissions. Private
permissioned chains keep data private to only authorized entities, while public per-
missioned BCs allow anyone to read data. Permissionless BCs can be accessed and
used by anyone following the respective protocol.

Public BCs traditionally employ PoW consensus, where network participants solve dif-
ficult mathematical problems, which determines whether they can append blocks or not.
Alternatively, they might implement PoS, where the ability to validate blocks is tied to
the stake that an entity might have in the network (and as such, the incentive is to ensure
that the chain works correctly).

Permissioned BCs prefer schemes such as PBFT or PoA. In PoA, a predefined set of
authorities take turn to produce blocks. The other authorities then vote to include the
proposed block, which is then appended to the chain. This has the advantage that it is
less computationally intensive compared to the PoW mechanism.

3.2.1 Blockchains for REV

To understand why BCs are a good fit for REVs, let us briefly review how traditional
voting works. Eligible voters cast their votes into ballot boxes. Once a ballot is in the
ballot box, the ballot is considered final, and cannot be modified anymore or removed.
These properties are called immutability and append-only. In traditional voting, there are
multiple polling stations, geographically distributed, where voter can go to cast a vote. If
someone wanted to rig a vote, it would require tampering with multiple ballot boxes, with
a high risk of being detected. These relate to the no single-point-of-failure, resilience,
fault-tolerant, and decentralized properties.

2https://www.hyperledger.org/
3https://www.substrate.io/
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Essentially, what is needed is an immutable, append-only, distributed database. These
properties can be found in a theoretical concept called a public bulletin board (PBB) [47].
A PBB is a component which provides an authenticated channel, providing transparency
and verifiability to many schemes. It’s main properties are [47]:

• Information can only be appended, not removed or modified.

• The board is public, i.e., anyone may read the board.

• The board provides a consistent view to any viewer.

These properties, however, can be found in other database systems. What sets a BC apart
is the addition of a consensus algorithm and byzantine failure tolerance, which provides
a resilient, fault-tolerant system.

Among the different types of BCs, a PoA-based public permissioned BC fulfills all the
requirements for a ballot box. A ballot box should provide a consistent view of its state,
meaning that any participant of the network can verify that the chain is behaving cor-
rectly. It should be append-only and, once the data is included, be immutable. We do
not wish for anyone to produce blocks, which in this case would mean including ballots
for the final tally. This responsibility is given to a set of distinct authorities – the valida-
tors or sealers. Through the BC’s consensus algorithm, trust is decentralized among the
validators, ensuring that no single entity can interfere with the correctness and privacy
of the vote. Additionally, decentralization also means that voter suppression is harder to
achieve.

Public readable-BCs, however, also provide certain challenges, which drive key design
decisions of any voting scheme. Transparency means that any action is visible to anyone
in the network. In certain cases, for example, a voter could wish to hide the fact that
they participated in a vote. Any data, which must remain confidential, must be protected
by some means external to the BC. Many systems, for example, encrypt votes on a client
device and make use of mix-nets or homomorphic encryption to protect the voter’s privacy
while counting votes.

3.2.2 Substrate

Parity’s Substrate is a BC development kit for building custom BCs. It provides a modu-
lar architecture which enables developers to customize most aspects of a BC. Substrate’s
mental model abstracts a BC as a state machine with pluggable state transition func-
tions. It provides, for example, ready-made modules for consensus, identity management,
balances, governance, and smart contracts. Next to the ready-made modules, is the possi-
bility to create custom modules called pallets. By developing a pallet it is possible to build
custom logic directly into the BC runtime. Out of the box substrate chains use Aura, a
round-robin consensus algorithm with an additional finality algorithm called Grandpa4.
The prototype that accompanies this thesis, is built on Substrate, and more details can
be found in Chapter 7.

4https://substrate.dev/docs/en/knowledgebase/advanced/consensus
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Chapter 4

Related Work

This section presents the main approaches of REV systems and the major milestones
over time. In literature, many systems were proposed. However, few were practically
implemented, or have reached a mature production stage beyond research.

Chaum, in his seminal work, introduces secret-ballot voting protocols based on mix-
nets [38]. The idea is to encrypt a ballot and send it through a mix, which would either
re-encrypt or shuffle many ballots, until the original ballot becomes untraceable to an
observer, at which point the ballot is decrypted and the plaintext is revealed for tallying.

In 1997, Cramer, Gennaro, and Schoenmakers [19] devised a multi-authority voting system
based on homomorphic encryption to avoid needing to decrypt single votes, and threshold
encryption to avoid giving any single entity the power to decrypt ballots.

A major milestone was the development of Helios [20]. Helios is one of the first practical
systems published in 2008, which was used in real-world elections. Helios provides BS
through public encryption. The vote is encrypted on the voter’s client device, with the
server’s public-key, and sent to Helios. To provide verifiability, Helios implements Benaloh
challenges [48] (see 4.1). Over the years, Helios was further developed to address the
limitations and vulnerabilities detected by other researchers1. One of these advancements
is Belenios [21], and its receipt-free extension BeleniosRF [49]. Cortier et al. [50] noticed
that Helios does not protect against ballot stuffing in case of a malicious bulletin board.
Thus, Belenios enhances Helios with the addition of a multi-authority scheme. BeleniosRF
further builds on this, adding a trusted randomization authority.

Attempts to combine BCs and remote voting are much more recent. Liu and Wang [51]
proposed in 2017 a scheme applicable to both permissioned and permissionless BCs. It
relies on trust between a voter, an organizer, and an inspector. The voter encrypts the
ballot using the organizer’s public-key. Then the inspector signs it, using blind signatures.
The voter can then cast it. The system assumes that no collusion occurs. The Open Vote
Network [52] offers a self-tallying smart contract approach. Unfortunately, the scheme
requires voters to be active after casting the ballots. Voters are also in charge of decrypting
the votes, which decreases fairness, as the last voter can tally the final result before others.

1https://documentation.heliosvoting.org/attacks-and-defenses
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The system was prototyped on the Ethereum BC and can only be used for small-scale
elections [52].

The University of Zurich, developed Provotum [7] – a BC-based scheme – which is the
starting point for this work. Provotum presents a trusted, centralized architecture backed
by a BC, while Provotum 2.0 was developed to fully embrace decentralization, using a
smart contract approach based on Ethereum.

4.1 Cast-as-Intended

There are two main approaches to Cast-as-Intended: challenge-based and code-based.
Both are relevant mechanisms in the field of REV, and both have varying degrees of
usability [53].

One challenge-based mechanism to provide ballot verifiability was proposed by Josh
Benaloh, called Cast-or-Challenge or Benaloh Challenge [48]. A ballot can be challenged,
in which case it is audited. An audited ballot must be discarded, and a new ballot must
be generated. Otherwise, the audit could be used as a receipt for vote-selling, or compro-
mise Ballot-Secrecy. Two different types of challenge were eventually proposed: either
through decryption, or retracing the ballot’s computation. In the first variant, the vote is
decrypted to reveal the voter’s choice. In the second, the cryptographic material used for
the encryption is disclosed, and the vote is recomputed to show that the client device en-
crypted the voter’s choice honestly. In either way, the voter’s selection is exposed and the
ballot must be discarded, as otherwise BS cannot be guaranteed. As the voting machine
can not anticipate whether or not the voter will challenge the encryption, a compromised
voting device can not know when to tamper with the ballot. Cast or Challenge mecha-
nism are probabilistic, since it is not guaranteed that every voter will challenge the voting
machine.

A different mechanism proposed later, was Cast-and-Challenge [54]. It is based on the
same idea as Benaloh’s, but does not require discarding the ballot, hence enforcing the
challenge on each ballot created. The scheme is based on chameleon commitments to
generate challengeable proofs without leaking privacy.

Code-based approaches have seen usage in Switzerland [55, 56] and Norway [57]. Each
voter receives a code sheet via traditional mail, listing a check code for each voting option.
Each voter receives a distinct code for each option. When a voter casts a vote, a code is
either displayed on the voter’s screen or sent via a second channel [57]. If the returned
code matches the one on the sheet, the vote was cast correctly. Such systems usually rely
on a secure server to store voter specific data.
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4.2 Receipt-Freeness

Various schemes have been proposed in literature to achieve Receipt-Freeness. The con-
cept was introduced by Benaloh and Tuinstra [42], who also proposed two protocols based
on homomorphic encryption: a single-authority one and a multi-authority one. Both
schemes assume a physical voting booth, providing a two-way secret channel between
the voter and the authorities. Hirt [58] eventually showed that the first scheme did not
guarantee Ballot-Secrecy, while the other was not receipt-free. Sako and Kilian [59], pro-
posed a shuffle mix-net based approach, with a very high communication complexity in
the mix, due to proof generation. Afterwards, Lee and Kim [60] and Baudron et al. [61],
independently proposed the usage of a special entity to achieve Receipt-Freeness, called
randomizer. The randomizer would act as a single node re-encryption mix-net, so that
even a voter, using a biased-randomization source, would not be able to recreate the bal-
lot as it appears on the public bulletin board. Lee and Kim’s system required a trusted
randomizer and was shown to not achieve Receipt-Freeness [33]. Baudron et al. [61],
instead, proposed a system which did not rely on a trusted entity, but it is based on
Paillier encryption and threshold cryptography, which requires increased computation for
each authority on the voter’s side. Finally, Hirt [33] presented an efficient ElGamal-based
receipt-free scheme, which does not require additional trust in the randomizer. Unfortu-
nately, later advances in the Fiat-Shamir heuristic (see Chapter 3) mean that a certain
amount of trust in the randomizer still remains, as the proposed system applied a weak
Fiat-Shamir transformation. Desmedt and Chaidos [34] showed an advanced version of the
Helios ballot copying attack by Cortier and Smith [50], which allows a voter to copy an-
other voter’s vote. The authors proposed to blind the vote, as well as the validity proof, in
order to make the ballot indistinguishable to the system. Interestingly, this attack, which
can be applied only on low voter turnout, can be used to produce a receipt-free scheme.

In more recent works, BeleniosRF [49] designed a scheme, which achieves Receipt-Freeness
using randomization and randomizable signatures to prove to the voter that the vote was
not tampered with. Unfortunately, such a system relies heavily on the randomizer to
act honestly, and presents an architecture which places all trust in the central voting
authority.

One of the first receipt-free schemes based on a BC is due to Yu et al. [62], who proposes
a scheme in which the chain re-encrypts the ballots it receives. However, the protocol
requires a private permissioned BC, in order to protect the randomization used for the
re-encryption. Such a system lowers the trust in any single component by distributing
the responsibility of randomization on multiple nodes of a BC.
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Chapter 5

Provotum 2.0 Security Analysis

The security of REV systems is fundamental for the fair execution of electoral and voting
processes. In that sense, analyzing Provotum is a necessary and crucial step to validate
the trust assumptions and assess risks, threats, and vulnerabilities.

The CSG group at the University of Zurich, developed Provotum 2.0 as a continuation of
the Provotum project in 2020 [7]. Provotum 2.0 is a REV system based on a PoA BC,
acting as its public bulletin board. It defines a multi-authority, homomorphic encryption
voting scheme. The authors already identified some limitations that need to be mitigated
before Provotum can be used for real-world votes and elections. Thus, this section con-
ducts a security analysis of the scheme, in order to highlight any additional vulnerabilities
and attack vectors, which will drive the improvements presented in Chapter 6.

5.1 Provotum 2.0 Design

In order to determine the risks to Provotum, we must define the scope of the system to
protect, which also establishes the scope of the threat model. Figure 5.1 shows the design
of the system and its stakeholders. One core component is the private PoA BC based on
Ethereum, which serves as a PBB. The Provotum scheme is independent of the actual
BC (in that case Ethereum), and could be replaced by any other BC which offers Smart
Contract (SC) capabilities.

The main components of Provotum 2.0 can be summarized as follows:

• The Identity Provider (IdP) is a Trusted Third-Party (TTP) that verifies the
identity and eligibility of a voter. After authenticating a voter, the IdP provides her
with a one-time token which will prove that she is eligible to vote.

• The Access Provider (AP) is a first-party system acting on behalf of the voting
authority, as a gatekeeper. In exchange for a valid token, it will fund the users’ wallet
with enough tokens to participate in the election. This decouples the authentication
from the election process, increasing privacy: the IdP knows the identity of the voter
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Figure 5.1: Provotum components

and the assigned token, while the AP knows the token and the wallet address. To
link a ballot to a user, the IdP and the AP would have to collude and share their
information.

• The set of Sealers, where a sealer is an entity running a node participating in the
PoA BC, as a validator. Furthermore, Sealers participate in the distributed key
generation and vote tallying.

• The Voting Authority (VA) is an entity coordinating the vote. The VA is re-
sponsible for the BC bootstrapping process (with the Sealers), deploying the voting
SC, and opening and closing the vote.

• The PoA BC serves as an immutable PBB. PBBs are central component of REV
systems. Equally important as the immutability aspect is the decentralization of
storage and resilience.

• The set of eligible voters who participate by casting votes.

• The general public who is interested in having fair elections and votes, which can
verify the data posted on the PBB at any time.

5.1.1 Identity Management in Provotum

Identity Management in Provotum is performed by three stakeholders: (i) the IdP, (ii) the
AP, and (iii) the voter. The IdP is an independent TTP that verifies the voter’s identity.
The AP is a service run by the governing body of the vote (e.g., canton, municipality,
or federal government) which grants access to eligible voters. At the beginning of a vote,
the IdP provisions and assigns random one-time tokens to each eligible voter. The IdP
then sends the list of tokens to the AP. When a user authenticates herself to the IdP, she
receives her token over an authenticated untappable channel.
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The user can request access through the AP with her assigned token. Upon receiving
tokens, the AP transfer ETH tokens to voter’s address. This token is marked as used and
the AP stores the wallet.

Analysis:
The described process assumes that the IdP is trusted. Otherwise, a malicious IdP
could forge identities by minting more one-time tokens to give access to an adversary
to rig the vote. The same holds for the AP who could fund wallets of users who have
not been authenticated. Additionally, a collusion between IdP and AP makes linking
an encrypted ballot to an identity trivial.

5.1.2 Vote setup and casting

The vote is composed of the following sequential steps:

1. Registration

2. Pairing

3. Key generation

4. Voting

5. Tallying

Registration

Each sealer creates its own Ethereum wallet, consisting of a public/private key pair. They
start their applications and send their public-key to the voting authority. As mentioned
in [63], it is important that these steps are conducted offline.

Analysis:
The paper mentions the importance of creating the keys offline. However, it does not
specify that the public-key should be sent to the VA over an authenticated channel. In
practice, this could be done physically or through a point-to-point connection.

Pairing

Each sealer fetches the BC’s genesis configuration from the VA and start their BC nodes.
The configuration provides the sealers and the AP with enough funds. Once all sealers
are up and running, the VA deploys a smart contract. The SC is responsible of handling
and storing vote’s system parameters, questions, ballots and proofs, privileged addresses
(VA, sealers, and AP who are not allowed to vote), and so on. Aside from storing ballots,
it can also verify proofs and the final decryption of the tally.



28 CHAPTER 5. PROVOTUM 2.0 SECURITY ANALYSIS

From this point forward, the BC and the SC are operational, and further steps are con-
ducted on the chain.

Analysis:
The protocol derives its security properties based on the properties of the underlying
PoA BC. The nodes are considered semi-trusted, in that the network is resilient up
to a certain threshold of byzantine actors. The threshold depends on the consensus
algorithm in use.
Similar as before, this steps also assumes an authenticated channel to fetch the PoA
configuration. Otherwise, MITM attacks would be possible to tamper with the config-
uration.

Distributed Key Generation

Each sealer generates an ElGamal key pair and a proof of knowledge of their own private-
key. These are sent to the SC, which combines them into a single public-key: the combined
public-key is used by voters to encrypt their ballots. By utilizing a cooperative decryption
scheme, no single entity has power over the decryption: i.e., if at least one sealer remains
honest, the ballots remain confidential.

Analysis:
While the N/N cooperative scheme provides a very strong confidentiality guarantee
against a byzantine party, it makes it also very brittle against denial of service. If a
single sealer loses its key (e.g., due to compromise), all ballots are effectively lost.

Voting

The voter constructs a ballot and encrypts it with the system’s public-key. The voter also
generates a proof of validity of the ballot. The encrypted ballot and proof are submitted
directly to the SC to avoid trusting any intermediaries. If the proof is valid, the ballot is
stored on the PBB.

Analysis:
The scheme claims to possess the Cast-as-Intended and Receipt-Freeness properties.
However, these are not guaranteed. The claim of Receipt-Freeness holds only if the
voter is honest. Although, Receipt-Freeness is the property of not being able to prove a
vote, regardless of whether the voter is honest or not. A dishonest voter (e.g., a bribed
voter) can record the generated cryptographic material and, at any time, reconstruct
the ballot such that it is exactly the same as the one stored on the PBB. In this sce-
nario, the ballot becomes the receipt of the vote.
Additionally, Cast-as-Intended is only achieved under the assumption that the client’s
device remains honest. Although Cast-as-Intended was introduced as a way to pro-
tect against malicious voting devices, yet the assumption automatically negates the
property.
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Tallying

All sealer fetches the encrypted ballots and sums them homomorphically. The encrypted
sum is then decrypted with the sealers’ private-key. Every sealer also produces a proof
of correct decryption. Each decrypted share is then sent back to the SC, which combines
them to produce the final tally. A decrypted share does not leak any information under
the DDH assumption.

Analysis:
The sealers share their decrypted shares publicly. A malicious sealer could wait for all
other sealers to submit in order to compute the final tally on its own. Depending on
the results, it could choose not to publish the last share, hence blocking the election.

Result

Once all sealers have submitted their decrypted shares, the VA can trigger the combination
of shares. This combination determines the number of “yes” votes submitted. The entire
process is run publicly on the SC and can be reproduced by anyone. Thus, no proof is
necessary.

Analysis:
Executing this step on the BC does not bring any security improvements. The combi-
nation of the tally shares relies entirely on publicly available information and, as such,
it can be computed and verified by anyone with access to the PBB. As a matter of fact,
running the final decryption stage on the chain might affect its availability. Consider
an election with millions of votes. The decryption would be long-running and compu-
tationally intensive, as it involves solving a discrete logarithm. This means that there
is a high-risk of running out of gas during the decryption.

5.2 Threat Modelling

Given the context of online voting, the threat model considers highly motivated adversaries
whose intention is either to tamper with the tally or to cause denial of service attacks in
order to suppress voters. The adversary is computationally bound, i.e., she cannot break
assumptions based on the intractability of problems such as the DDH assumption [16].
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5.2.1 Attack vectors and limitations

Possible threats to the scheme are presented as listed below, as a result of the analysis
discussed previously.

ID Title Threat

T1 Lack of Cast-as-Intended Cast-as-Intended is achieved only under the assumption that
the voting device is not compromised and acts correctly,
which automatically negates the property.

T2 Lack of Receipt-Freeness A dishonest voter can easily reconstruct her own ballot to
produce a receipt of her vote. It requires storing the ran-
domization parameter used to encrypt the vote.

T3 Forced abstention A coercer can stop a voter from voting by simply requiring
the voter to submit her ether.

T4 Missing channel assumption The protocol assumes the existence of an authenticated,
untappable channel between sealers and VA. Without it,
anyone could in practice register their wallet as a sealer
or run a MITM attack when fetching BC’s configs. This
could be used to takeover the network using segmentation
attacks/51% attack1.

T5 Missing BC assumption Reusage of the same BC for multiple votes could allow a
voter to participate in the distributed key generation pro-
cess. As shown in further findings (Table 5.6), due to im-
plementation issues (not the protocol), the adversary could
block the vote and force a retry or manipulate the tally.

T6 Attack of the clones An attack to the consensus of PoA- or PoS-chains [64], which
can be used to allow double spending. In this case, it could
be used to prevent ballots from being included in the chain.

T7 Fault-tolerance Due to the cooperative N/N decryption scheme, if a single
sealer loses the key, all ballots are lost and the tally cannot
be computed.

T8 Sealer-initiated Denial-of-Service All sealers share their decrypted shares publicly and not at
the same time. A malicious sealer could wait for all other
sealers to submit, in order to compute the final tally on
its own. Depending on the results, it could choose not to
publish the last share, blocking the election.

T9 Decryption Denial-of-Service The time required to decrypt the final tally is directly pro-
portional to the number of “yes” votes received. This could
potentially be long-running and cause a denial-of-service on
the network. For an election with a high-turnout of voters,
it would be better to compute the final tally offline, and
then publish the results on the BC.

T10 Lack of ballot weeding The protocol does not specify any protection against ballot
reuse. As shown by Cortier and Smyth [50], if an adversary
were to copy ballots of a user, this can be exploited to deter-
mine who voted for which candidate. However, this attack
is only applicable on very low-scale votes.

Table 5.2: Provotum 2.0 scheme threats

1https://en.bitcoin.it/wiki/Majority_attack

https://en.bitcoin.it/wiki/Majority_attack
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As the IdP is considered a trusted entity, risks to identity management are listed sepa-
rately, only for completeness.

ID Title Threat

T11 Session hijacking The token issued by the IdP can be stolen or bought. This impedes an el-
igible citizen from voting, while allowing an adversary to vote, bypassing
authentication.

T12 Token selling The IdP token can be easily transferred to a vote buyer. Note that this
is an issue with many remote voting systems, including postal vote.

T13 Voter impersonation If a voter registers for electronic voting, but does not vote, the IdP can
vote on the voter’s behalf, by using her assigned token.

T14 Token re-use The tokens provided from the IdP may not be reused in other elections.
An adversary observing multiple elections could track usage of the same
tokens to link votes to the same pseudonymous identity, which provides
useful information for de-anonymisation through statistical analysis.

T15 IdP & AP collusion Collusion of the IdP and AP would allow linking a ballot to an identity.

T16 IdP forges identities A malicious IdP could forge identities by minting more one-time tokens.

T17 AP forges identities A malicious AP could fund wallets of arbitrary users, allowing them to
bypass authentication.

T18 AP voting A malicious AP could create and fund its own wallets, allowing it to
bypass authentication.

Table 5.4: Identity Management threats

The following two attacks are threats that were identified in the implementation, not the
scheme.

ID Title Threat

T19 Missing authorization The SC does not verify whether the public-key shares are coming from
sealers or not. Anyone who sends a transaction with a valid public-key
and proof, will take part in the cooperative scheme. The implicit as-
sumption here is that no non-sealer user would have the funds necessary
to submit transactions to the BC before the Voting phase. A colluding
sealer or AP could transfer funds to a wallet address to allow someone
else to send transactions. This could be used during the tallying phase
to block the final tally decryption.

T20 Tampering Due to an implementation flaw, it is possible for the last sealer to
tamper with the final results. This could be detected by auditing all
SC function calls, which is a plausible assumption to make, depending
on the vote (low/high stakes). The flaw is that the SC does not compute
the homomorphic sum but simply uses the one submitted by the sealers.
In the case of honest sealers, the sum should always be the same. The
SC also stores the last submitted homomorphic sum to use for the
final decryption (as a way to not have to compute the homomorphic
sum in the SC). A malicious sealer, given all decrypted shares, could
attempt to find a different encrypted sum, such that when decrypted
and combined, returns a final tally to the favor of some candidate.

Table 5.6: Implementation threats
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Chapter 6

System Design of Provotum 3.0

This section describes Provotum 3.0. The updated system can be seen as an add-on to
Provotum 2.0. This is reflected in the systems stakeholders as illustrated in Figure 6.1.

Figure 6.1: Provotum 3.0 architecture

In Provotum 2.0, the Access Provider entity was designed to provide voter’s with the
Ethereum (ETH) required in order to submit transactions to the chain. Owing to the
replacement of the Ethereum BC with a Substrate-based one, the need for tokens is
removed, thus the AP can also be removed from the system.

A small note on tokens most BCs introduce the concept of fees on each transactions
as a mean of deterring abuse, such as spam and denial of service attacks – if an attacker
has to spend money to attack a system, the incentive to do so is reduced. Furthermore,
linking computational resources to a cost can be used to mitigate application layer denial
of service attacks. In Provotum 2.0, ETH tokens were used as a proxy for authentication.
In Provotum 3.0, even if tokens were used, it would not allow to cast votes, as all voters
need to register themselves with the identity provider.

33



34 CHAPTER 6. SYSTEM DESIGN OF PROVOTUM 3.0

6.1 Stakeholders

Provotum defines a model consisting of N sealer authorities (S1, . . . , SN), M voters, one
randomizer, one identity provider, one voting authority. Communications take place over
a public bulletin board (PBB), represented by the Substrate BC. The PBB is an au-
thenticated append-only channel. A threshold number of sealers t is needed in order to
decrypt the final tally. For this thesis, we consider N = t, but replacing the distributed
key generation algorithm with one that requires t < N would be possible. The design
assumes the usage of a BC, such as Substrate, in which the logic can be tied directly into
the runtime. However, it can be replaced with a smart contract as in Provotum 2.0.

The main components of Provotum 3.0 can be summarized as follows:

• As with the previous iterations of Provotum, an Identity Provider (IdP) entity
is introduced to the mix. It is a trusted third-party responsible for eligibility verifi-
cation. Upon authentication, voters present the IdP with the public (blind) address
of their wallet. The IdP signs the address and returns the signature to the voter.
The voter then submits the signature to the BC, which verifies it and stores it. The
signature will allow anyone to verify that a ballot, cast from an address, is approved
by the IdP. Thanks to the use of blind signatures, the IdP will not be able to link a
ballot to the real identity of a voter, hence providing a secure and privacy-preserving
authorization mechanism.

• The Randomizer is a new entity added in Provotum 3.0. It’s responsibility is to
randomize (or blind) the voter’s ballot, in order to achieve Receipt-Freeness. This
is done by adding non-determinism to the process of creating a ballot. While the
ElGamal encryption scheme includes a random nonce, a malicious voter can simply
reuse the same nonce, allowing them to easily prove to a vote buyer how she voted.
By adding a blinding factor, which is out of the voter’s control, the voter is not able
to reproduce the same ballot which is published on the PBB.

The randomizer does not learn any of the votes it randomizes, since the blinding
can be done without knowledge of the plaintext. In order to enforce that a voter
randomizes the ballot, a randomizer’s signature will be required to cast a ballot.
To improve scalability and to avoid a single point of failure or that the randomizer
prevents voters from participating, multiple randomizers can be used which could
be operated by cantons, organizations, and NGOs. Additionally, a randomizer can
be replaced with a government-issued hardware token.

It is important to note, that collusion between the randomizer and a vote buyer or
voter would trivially remove RF from the scheme.

The randomizer does not need to communicate with any other part of the system.

• Sealers are entities responsible of running the BC validator nodes, as well as par-
ticipating in the distributed key generation phase. Their public-key shares will be
used to produce the election public-key, with which votes will be encrypted. Once
the vote is over, the sealers will collaboratively decrypt the final tally. Due to the
distributed nature of votes, each polling place, city, or canton could run a sealer.



6.2. VOTING SCHEME OF PROVOTUM 3.0 35

• The Voting Authority (VA) is responsible of orchestrating the various phases
of the vote. (i) It coordinates the BC bootstrap with the sealers, (ii) it stores the
vote’s topic and public-key generated through the distributed key generation, (iii)
and it closes the vote, by signaling to the sealer to start tallying. The VA could be
operated by a municipality, canton, or federal government.

• The Substrate PoA BC acts as the systems PBB. The BC implements the Provo-
tum protocols directly into its runtime, exposing an API with which it is possible
to submit transactions and read state tied to the voting process.

• Voters are eligible citizen who wish to participate in the democratic process. They
communicate directly with the PBB to cast votes, thus removing the need to trust
any single entity – i.e., removing a single point of failure – and mitigating the risk
of voter suppression.

• The general public is interested in having fair elections and votes, which can verify
the data posted on the PBB at any time.

6.2 Voting Scheme of Provotum 3.0

Provotum follows in the steps of Cramer et al. [19]. A set of N talliers collaboratively
generate a key pair, where the secret-key is shared among the authorities. Each voter
encrypts her vote using the combined public-key and posts it to the public bulletin board.
A vote encodes a “yes” or “no” as either a 1 or a 0, respectively. By homomorphically
summing the encrypted votes, we obtain the encrypted amount of “yes” votes. The au-
thorities jointly decrypt the sum, to reveal the plaintext value. By subtracting the amount
of “yes” votes from the total amount of votes, we obtain the “no” votes. A special author-
ity – the Randomizer – helps establish Receipt-Freeness by adding a source of mandatory
randomization, which is never revealed to the voter.

Pre-Voting Phase

Registration Pairing Key Generation

Voting Phase

Randomization

Post-Voting Phase

Tallying Result

on chain

Identity Provisioning

off chain off chain on chain on chain on chain on chain

Ballot Preparation

on chain

Figure 6.2: Provotum 3.0 scheme’s phases

The voting scheme can be divided into three phases (Figure 6.2): (i) Pre-Voting/Setup
Phase, (ii) Voting Phase, and (iii) Post-Voting Phase.

The scheme is largely similar to the one in Provotum 2.0. The key differences are:

• Voter’s ballots are randomized before casting, making the process of generating a
ballot non-deterministic.

• Identity Management: no Access Provider is needed, owing to the IdP that signs
voter’s addresses to allow them to vote.

• No smart contract, instead the logic is built directly into the chain.
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6.2.1 Notation

The following sections make heavy use of various mathematical notation, which is briefly
described here.

A ballot consists of a vote v ∈ {0, 1}. E(v, α) represents the ElGamal encryption of the
vote v using a random nonce α. Σ is a DCP proof that the ballot contains either 0 or 1.
Choosing a value r uniformly at random from a group of order q is denoted with r ∈R Zq.
The homomorphic sum of two ciphertexts is denoted e1⊕e2. The multiplication of a scalar
c and an encryption e = (e1, e2) can be computed as c · e = c · (e1, e2) = (ec1, e

c
2) (mod p),

as demonstrated in Equation 2.19. H is a cryptographic hash function. The algorithm
used is not important and can be easily swapped.

6.2.2 Identity Provisioning

The identity provider (IdP) is in charge of verifying the eligibility of a voter. It receives
a list of identities from the relevant authorities. At any moment before the vote starts, it
creates an RSA key pair to use for signing.

In order to register with the system, a voter creates a key pair for the BC. The public-key
pkv, is blinded as described in Chapter 3. The voter then sends the blind address pkv,
together with her credentials to the IdP. The IdP verifies the credentials and signs the
address σ′ = Sign(pkv). It then returns the signature σ′ to the voter. The voter now
unblinds the payload, revealing the signature for her public-key σ = Unblind(σ′) When
the voter is ready to cast a ballot, she will send the signature σ together with the ballot to
the BC. The BC will verify the origin pkv of the ballot, the signature σ – if the signature
matches, the BC will accepts the ballot as coming from an eligible voter.

For the RSA key pair (skidp, pkidp) = ((N, d), (N, e)) and voter’s public-key pkv, we com-
pute the blind signature as follows (all operations (mod N)):

Voter IdP BC

r ∈R Zq knows d

s.t. r, N coprime

m = H(pkv)

m′ = m · re m′

σ′ = (m′)d

σ′

σ = σ′ · r−1
σ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m = H(pkv)

m
!

= σe

Figure 6.3: Voter-registration through blind signatures

The signature σ could in theory be sent at any moment between registration and casting
the ballot. For simplicity, in the proof-of-concept this is done right after registration.
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6.2.3 Pre-Voting Phase

During the Pre-Voting Phase, the sealers and VA coordinate to create the initial BC’s
configuration and public-keys to be used in the vote.

In the Registration step, each sealer node generates a Substrate wallet, consisting of a
public/private key pair. The public-key/wallet address is sent to the VA which stores it.
It is important that the keys are transmitted over an authenticated channel, otherwise an
adversary could impersonate a sealer (see Chapter 5).

Based on the registered sealers, in the Pairing phase, the VA generates a genesis config-
uration file, which specifies the sealers as the validators of the PoA network, and the VA,
which are allowed to create, open, and close votes. The VA publishes the genesis file and
starts a BC node, to allow the other nodes to discover each other. The VA does not act
as a validator node, although it could. Each sealer starts its own BC node to create the
network and starts sealing blocks.

In contrast with Provotum 2.0, the voting logic is built into the BC runtime, and thus no
deployment of a smart contract is needed. The Substrate chain exposes the necessary API
to create a vote, set the public parameters required for encryption (refer to Chapter 3),
cast ballots, verify proofs, and tally the votes.

The Distributed Key Generation step closes off the pre-voting phase. At the appro-
priate time, the VA creates a new vote, by sending a transaction including the vote’s
topic, and the public parameters in a transaction. Afterwards, each sealer fetches the
public parameters to create an ElGamal key pair (pki, ski) and a Schnorr proof. They
send the public-keys and the proof to the BC. The BC verifies the proof – if it is valid, it
stores the public-key.

Once all validators have submitted their keys, the VA combines them into a single public-
key pkvoting which is stored on the chain, and opens the vote.

6.2.4 Voting

The voting phase is divided in two steps. In the first one the voter chooses an option,
encrypts it and generates a proof as in Provotum 2.0. In the second phase, the voter
interacts with the randomizer to blind the encrypted ballot and to generate a blind DCP
proof to provide Receipt-Freeness. Figure 6.4 illustrates the second phase.

Ballot Preparation

In the first step, the voter constructs a random encryption e = E(v, α), with randomness
α, using the vote’s public-key pk. The voter also generates a NIZKP, proving that v is in
the correct range without leaking v. This first step is the same as in Provotum 2.0.
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Voter Randomizer PBB

e = E(v, α) (i) e

e∗ = R(e, ξ)

(ii) e∗, re-encr. proof prove e∗ ≡ e

(iii) validity proof

(iii) validity proof

(iv) e∗, validity proof
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 6.4: (i) the voter sends the encryption of her vote v to the randomizer. (ii) The
randomizer blinds it and proves to the voter that the re-encryption still represents v.
(iii) Both voter and randomizer interactively generate a proof for the re-encrypted vote.
(iv) The re-encryption and the validity proof are sent to the PBB.

The second step is an interactive protocol between voter and randomizer. The voter sends
the vote e = E(v, α) and the NIZKP to the randomizer. The randomizer first verifies that
the ballot is valid, then it proceeds with the randomization protocol.

Vote Randomization

The randomizer can randomize (or blind) the ballot using the property that, by homomor-
phically adding an encryption of 0, the contents of the encrypted ballot do not change [33,
34]. Formally, for a ballot e = E(v, α) = (c, d) = (gα, hαgv), a randomization e∗ with
nonce ξ is defined by the randomization function R(e, ξ), which can be computed as

e∗ = R(e, ξ) = E(0, ξ)⊕ E(v, α)

= (gξ, hξ)⊕ (gα, hαgv)

= (gξgα, hξhαgv)

= (gξ+α, hξ+αgv)

= E(v, ξ + α)

(6.1)

The randomization performs a re-encryption of the same vote v. It is indistinguishable if
ξ is chosen at random, under the DDH assumption. Additionally, it is not reproducible, if
the randomizer behaves honestly and uses a different random parameter ξ for each ballot
randomization.

In order to prove to the voter that the returned ballot e∗ does not encrypt a different vote
as the one intended, the randomizer must produce a ZKP. The simplest way to do this is
to prove the equivalence of two discrete logarithms as E(0, α) = e∗ 	 e. The meaning of
	 is “Homomorphically add the inverse of the value”, i.e., e′ 	 e = e′ ⊕ e−1.
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Definition 6.2.1 (Proof of Re-encryption) A proof of re-encryption of an encrypted
value e is a ZKP of equivalence of E(0, α) = e∗ 	 e, α ∈ Zq, where e∗ is a re-encryption
of e, i.e., e∗ = R(e, ξ) [33].

Given a voter’s ballot e = E(v, α), a randomization e∗ = R(e, ξ) = E(0, ξ)⊕ e, a public-
key pk, and public parameters (p, g, q), we want to prove that e− = e∗ 	 e equals some
encryption of 0, i.e., e− = E(0, ξ), without leaking ξ [33].

Randomizer Voter

knows e−, ξ knows e−

s.t. e− = E(0, ξ)

α′ ∈R Zq
e′ = E(0, α′)

e′

c ∈R Zq
c

β = c · ξ + α′

β

E(0, β)
!

= c · e− ⊕ e′

Figure 6.5: Proof of E(v, α) = e ≡ e∗ = R(e, ξ)

Despite this proof, one last step is necessary in order to ensure Receipt-Freeness. In fact,
if the proof were sent like this to the voter – the randomization proof, together with the
original and re-randomized ballots – would be a receipt of the vote. For this reason, we
use designated-verifier proofs, implemented using Schnorr’s identification scheme [30].

Definition 6.2.2 (Designated-Verifier Proof of Re-encryption) A designated-verifier
proof of re-encryption is a ZKP of re-encryption, composed of a logical disjunction of a
Schnorr Proof, together with a re-encryption proof. The proof can only be verified by the
voter, identified by the public-key pkvoter [33].

Given all the parameters from the previous definition, together with the public-key pkvoter =
gskvoter , we wish to prove that e− = e∗ 	 e is equivalent to some encryption of 0, i.e.,
e− = E(0, ξ), without leaking ξ [33].
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Randomizer Voter

knows e−, ξ knows e−

s.t. e− = E(0, ξ)

α′ ∈R Zq, e′ = E(0, α′)

c2 ∈R Zq, s2 ∈R Zq,

s.t. t2 = gs2 · pk−c2voter
e′, t2

c c ∈R Zq

c1 = c− c2 (mod q)

β = c1 · ξ + α′ c1, c2, β, s2 c
!

= c1 + c2 (mod q)

E(0, β)
!

= c1 · e− ⊕ e′

gs2
!

= pkc2voter · t2

Figure 6.6: Interactive designated-verifier proof of re-encryption

The algorithm can be turned into a non-interactive proof via the Fiat-Shamir heuristic,
with c = H(e′, e−, t2).

Randomizer Voter

knows e−, ξ knows e−

s.t. e− = E(0, ξ)

α′ ∈R Zq, e′ = E(0, α′)

c2 ∈R Zq, s2 ∈R Zq,
s.t. t2 = gs2 · pk−c2voter

c = H(e′, e−, t2)

c1 = c− c2 (mod q)

β = c1 · ξ + α′ e′, t2, c1, c2, β, s2 c = H(e′, e−, t2)

c
!

= c1 + c2 (mod q)

E(0, β)
!

= c1 · e− ⊕ e′

gs2
!

= pkc2voter · t2

Figure 6.7: Non-interactive designated-verifier proof of re-encryption

With this we have convinced the voter, that her vote has not been altered. However, we
still need to prove to the rest of the system that the randomized ballot is correct.
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Ballot Proof Randomization

A validity proof for a randomized ballot e∗ = R(E(v, α), ξ) is a non-interactive proof,
where e∗ contains a valid vote v ∈ {0, 1}. Both voter and randomizer cannot produce the
proof alone, as neither know all parameters that formed e∗. For this reason, voter and
randomizer must collaborate to create a NIZKP, which the rest of the system can verify.
The algorithm can be divided in two steps: (i) voter and randomizer collaborate to create
a divertible proof for e [32, 33], then (ii) the randomizer diverts this proof into a valid
proof for e∗ [33, 34]. Given a vote v ∈ {0, 1}, a ballot e = (c, d) = E(v, α), a re-encryption
e∗ = R(e, ξ), a public-key h, and public parameters (p, g, q), we interactively produce a
divertible proof of validity as in Figure 6.8.

Voter Randomizer

knows e, α, v ∈ {0, 1} knows e

s.t. e = E(v, α) = (c, d)

λ = 1− v
w, cλ, sλ ∈R Zq
av = gw (mod p)

bv = hw (mod p)

aλ = gsλ/ccλ (mod p)

bλ = hsλ/(d/gλ)cλ (mod p)

For i = 0, 1, set values ai, bi
a0, b0, a1, b1 ∆0, ∆1, k0, k1 ∈R Zq

For i = 0, 1

Ai = aig
ki/c∆i (mod p)

Bi = bih
ki/(d/gi)∆i (mod p)

t = H(A0, B0, A1, B1)

cv = C − cλ (mod q) C C = t−∆0 −∆1 (mod q)

sv = w + α · cv (mod p) c0, s0, c1, s1 verify, for i = 0, 1

C
?
= c0 + c1 (mod q)

ai
?
= gsi/cci (mod p)

bi
?
= hsi/(d/gi)ci (mod p)

If valid, set

Ci = ci + ∆i (mod p)

Si = si + ki (mod p)

Σ Σ = (A0, B0, A1, B1, C0, S0, C1, S1)

Figure 6.8: Ballot proof (DCP) randomization

If v = 0, set: a0 = av, b0 = bv, a1 = aλ, b1 = bλ
If v = 1, set: a1 = av, b1 = bv, a0 = aλ, b0 = bλ; do the same with ci and si
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At this point, the tuple Σ = (A0, A1, B0, B1, C0, C1, S0, S1) is a valid divertible non-
interactive proof for e – i.e., Σ verifies that e is valid, but can also be modified to verify
e∗ instead. It is also trivial to see that Σ is in essence a normal DCP proof, created
collaboratively by two parties without disclosing their respective secrets.

A diverted proof for the re-encryption e∗ can be computed by modifying the response
component of Σ. For a given ballot e, a proof Σ = (A0, A1, B0, B1, C0, C1, S0, S1), a re-
encryption nonce ξ, and a re-encryption e∗, the tuple Σ∗ defines a valid proof for e∗, with

Σ∗ = (A0, A1, B0, B1, C0, C1, S0 + C0ξ, S1 + C1ξ) (6.2)

The randomizer will thus return Σ∗ instead of Σ to the voter. Proofs of correctness and
soundness are given in Hirt [33] and Desmedt and Chaidos [34]. Of special importance
for Receipt-Freeness is the indistinguishability property. The blinded proof is indistin-
guishable from a valid proof generated independently. If the parameters ∆0,∆1, k0, k1 are
chosen uniformly at random, the probability of a dishonest voter to link the diverted to
the original proof, is negligible.

The keen eye will notice that only the commitments Ai, Bi are hashed in the protocol
in Figure 6.8. This means that the protocol uses a weak Fiat-Shamir transformation.
Unfortunately, due to the fact that the proof is generated for the encryption e, and then
diverted to e∗, the statement (the encryption) cannot be part of the hash. Should it be
the case, then after being diverted, the proof would not be correct (as the ciphertext
has changed) and the computation of the hash would result in a different challenge being
produced.

Since the randomized ballots are indistinguishable from any ballot, which the voter could
have generated on her own, a voter could choose to not randomize the ballot. To enforce
the protocol, the randomizer must provide a digital signature of the ballot (e∗,Σ∗), which
the BC verifies before accepting a ballot.

Vote Casting

The final ballot to be cast is then represented by the tuple

(e∗,Σ∗) = (R(e, ξ), (A0, A1, B0, B1, C0, C1, S0 + C0ξ, S1 + C1ξ)) (6.3)

The voter casts the tuple directly to the PBB, avoiding the need to trust any intermedi-
aries. The PBB verifies that the address (from which the ballot was cast) matches the
signature of a known voter, registered in the voter-registration phase. If it does, and the
address was not used to cast any votes yet, it verifies the Σ∗ via the normal DCP proof,
as described in Chapter 3. If the proof is also valid, the ballot is stored for tallying.

The BC rejects any ballot which is an exact copy of either the ballot or proof, to avoid
copying attacks [50]. An adversary could in theory blind the ballot such that it is a copy,
but indistinguishable. However, it cannot generate an indistinguishable proof, due to the
lack of the nonce used to encrypt the original ballot.
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6.2.5 Post-Voting Phase

The VA can close the vote and proceed to the tallying phase. In this phase, each sealer
fetches the encrypted ballots from the BC, it sums them homomorphically (as previously
described), and produces a decrypted share of the final tally. All N shares are necessary
to find the plaintext, so the share does not leak any information. In order to prove to
have decrypted correctly, each sealer produces a proof that the share was decrypted with
their respective private-key ski belonging to the public-key pki, which was submitted to
the chain in the DKG phase.

Every sealer then submits the decrypted share together with the proof, which the BC can
verify and store, if valid.

Once all sealers have submitted their share, the final tally can be revealed. It is important
to stress that the threshold encryption scheme requires all N sealers to act honestly. If
any sealer acts maliciously, the tally cannot be computed.

The final plaintext value will reveal the amount of “yes” votes, cast for a specific topic.
By simple subtraction, the number of “no” votes can be computed:

|votesyes| = |votestotal| − |votesyes| (6.4)

6.3 Summary

Provotum 3.0 employs many cryptographic primitives. Table 6.1 shows a concise mapping
of the algorithms to Provotum’s phases and steps, described in detail in Section 6.2.

Phases Steps Primitives

IdM Voter registration RSA blind signatures

Pre-voting

Registration Substrate key-generation

Pairing PoA

DKG N/N Threshold ElGamal key-generation, Schnorr

Voting
Ballot preparation ElGamal, DCP

Randomization ElGamal re-encr., DCP, Designated-verifier re-encr.

Post-voting Tallying ElGamal, Homomorphic sum, Chaum-Pedersen

Table 6.1: Cryptographic primitives applied in Provotum 3.0
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Chapter 7

Implementation

Along this thesis, a prototype was developed implementing the design proposed in Chap-
ter 6. All relevant source code has been published on Github under the Provotum orga-
nization1. The structure of packages is illustrated in Figure 7.1.

randomizersealer voting-authority identity-provider

provotum
infrastructure

ProvotumChainvoter

evote-crypto-tssubstrate-client evote-crypto-rs

Javascript Rust

Figure 7.1: Provotum 3.0 package structure

The ProvotumChain package stores the blockchain (BC) source code, which was developed
using Substrate2 – a modular framework that can be used to create purpose-built BCs by
defining custom logic right into the BC itself.

Substrate is developed in Rust3 and focuses on developer experience, offering various

1https://github.com/provotum
2https://substrate.dev/
3https://www.rust-lang.org/
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mature Typescript4 client-libraries for decentralized application development5. Libraries
in other languages are currently in development. However, as of the writing of this thesis,
they are not ready yet. As such, Provotum 3.0 backend applications are implemented in
Typescript.

The voter package is a frontend application, developed in Javascript and React6. The
voter communicates with the Randomizer and the Identity Provider via HTTP, while
it communicates with the BC using the Polkadot.js library7 over WebSockets [65]. Sealer,
Voting Authority, Randomizer, and Identity Provider are backend-only, nodejs ap-
plications, written in Typescript. All Javascript and Typescript applications depend on
the evote-crypto-ts package, which implements all crypto primitives described in Chap-
ter 2. The library evote-crypto-rs is a Rust port of the Typescript package, developed
for usage from ProvotumChain.

Finally, the Provotum Infrastructure repository holds Terraform8 and Ansible9 scripts.
It can be used to deploy Provotum on a single server or on a fleet of servers.

7.1 ProvotumChain

ProvotumChain is the package storing the source code for all BC code, written using
Substrate. This includes the actual BC runtime, as well as the custom, voting logic.
Substrate models a BC as a state machine, with a customizable state transition-function.
Custom logic, can be written into modules called pallets, with which the BC runtime can
be composed. Each pallet can define functionality and external interfaces, which can be
called from client applications. Pallets are written in Rust, a general purpose language,
which makes it easier to integrate with other libraries in the ecosystem. However, Rust
and Substrate have a steep learning curve, and in order for the chain to compile, pallet
code must be compilable into WebAssembly10 (Wasm). This limits and drives many of
the design choices when building an application on Substrate.

Substrate makes heavy use Rust macros11 to generate the “glue code” necessary to tie
the pallet into the runtime, at compile time. Many of the following concepts have a
Solidity Smart Contract equivalent. The decl_storage macro is used to define the pallet’s
persistent storage, similarly to a smart contracts field in Solidity. The macros decl_event
and decl_error provide a way to define the events and errors emitted by the pallet.
Finally, decl_module defines which callable functions are exposed and it orchestrates
actions that this pallet takes during block-execution (Listing 1)12.

4https://www.typescriptlang.org/
5https://github.com/polkadot-js/
6https://reactjs.org/
7https://github.com/polkadot-js/
8https://www.terraform.io/
9https://www.ansible.com/

10https://webassembly.org/
11https://doc.rust-lang.org/1.7.0/book/macros.html
12https://substrate.dev
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1 // Imports and Dependencies

2 use support::{decl_module, decl_event, decl_storage, decl_error}

3

4 // Runtime Configuration Trait: runtime types and constants

5 pub trait Trait: system::Trait { ... }

6

7 // Storage

8 decl_storage! { /* --snip-- */ }

9

10 // Events

11 decl_event! { /* --snip-- */ }

12

13 // Errors

14 decl_error! { /* --snip-- */ }

15

16 // Callable Functions

17 decl_module! { /* --snip-- */ }

Listing 1: Structure of a Substrate pallet

WebAssembly compatibility For future Substrate developers, a good rule-of-thumb
on whether a Rust package (or crate as they are called) is not Wasm compatible and will
thus not work with Substrate, is to check whether the code makes use of any I/O and
dynamic allocators (e.g., variable sized collections and strings). In general, crates marked
as no_std will be compatible and they will advertise this on their repository or on the
crates directory13.

7.1.1 Data Model

Substrate stores data in a key-value data store. It combines a traditional database with
a Merkle-tree-structure for integrity. It then provides high-level abstractions to facilitate
working with persistent data. The use of Wasm directly influences how data is written
and read. It defines its own codec, called SCALE: any value that is to be persisted must
be compatible with SCALE14. In general, Rust primitives and byte-vectors of arbitrary
size are compatible and can be written to storage. Substrate allows defining custom data
structures, but the fields they define must follow the mentioned restriction. This means
that more complex data-types have to be marshalled for saving, and demarshalled to
operate on it. As an example, Provotum makes use of the BigInteger crate for operations
on arbitrarily large integers, which are necessary in order to achieve a secure key-size
(e.g., 2048-bit and upwards). In contrast, Provotum 2.0, which is based on Ethereum and
Solidity, is limited to 256-bit keys [7]. BigInteger instances cannot be directly stored
on the chain. For this reason, public-keys, ciphertexts, and proofs are sent over the
wire as hex strings, converted into bytes for storage, and wrapped in BigIntergers for
cryptographic computations.

The following section will discuss some of the most important storage items.

13https://crates.io/
14https://substrate.dev/docs/en/knowledgebase/runtime/storage
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Voter-Registration

The identityProviderPublicKey field (Listing 2) stores the IdP’s public-key used to
verify voter-eligibility and can only be set by a VA. Once a voter obtains and submits a
signature for its address, if it is valid, the voter’s address will be added to the Voters

map. When a voter then casts a ballot, the chain will first verify if the address the ballot
was cast from is included in Voters.

1 decl_storage! {

2 trait Store for Module<T: Trait> as ProvotumModule {

3 /// Stores the Identity provider's public-key to verify signatures.

4 pub IdentityProviderPublicKey: Option<RsaPublicKey>;

5 /// Maps an address to an IdP signature.

6 Voters get(fn voters): map hasher(blake2_128_concat) T::AccountId => Vec<u8>;

7 }

8 }

Listing 2: Voter-registration storage items

Vote Setup

The VotingAuthorities and Sealers storage items self-evidently hold the addresses
of the voting authorities and sealers. They are defined in the genesis configuration file
and, through the config() extension, they are initialized and made available to the
pallet automatically. They are implemented in the Provotum pallet, in order to enforce
authorization checks. The VA can create an election, which can comprise of multiple
subjects (or topics). These are stored in the Elections and Subjects items. An election
persists the public-key of the VA who created it, a title, its current vote-phase, and the
public cryptographic parameters, as illustrated in Figure 7.2. A subject simply saves a
question, encoded in bytes. Finally, PublicKeyShares and PublicKey store the sealers’
shares and the computed vote public-key, as shown in Listing 3.

Figure 7.2: Election structure
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1 decl_storage! {

2 trait Store for Module<T: Trait> as ProvotumModule {

3 /// Voting authorities

4 VotingAuthorities config(): Vec<T::AccountId>;

5 /// Sealer authorities

6 Sealers config(): Vec<T::AccountId>;

7 /// Stores the public-key of a sealer together with its proof.

8 PublicKeyShares: map hasher(blake2_128_concat) ElectionId => Vec<PublicKeyShare>;

9 /// Maps a vote to a public-key, used to encrypt ballots.

10 PublicKey: map hasher(blake2_128_concat) ElectionId => Vec<u8>;

11 /// Maps ElectionId to an election.

12 Elections: map hasher(blake2_128_concat) ElectionId => Election<T::AccountId>;

13 /// Maps ElectionId to subjects.

14 Subjects: map hasher(blake2_128_concat) ElectionId => Vec<(SubjectId, Vec<u8>)>;

15 }

16 }

Listing 3: Vote setup storage items

Voting

When the election is in the voting-phase, voter can cast their ballots as a vector of tuples
of the subject the vote is for: a ciphertext and a proof (Figure 7.3). The ballot is verified
by checking, in turn, each encrypted vote and its proof. If all are valid, they are stored.
Otherwise, the entire ballot is rejected, as indicated in Listing 4#L15. This vector is then
split in one vote for each subject and saved in the Votes storage item (Listing 4). This
simplifies the tally at the end by already separating ballots by subject.

Figure 7.3: Ballot structure
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1 decl_storage! {

2 trait Store for Module<T: Trait> as ProvotumModule {

3 /// Maps an account and a vote to a ballot.

4 Ballots: map hasher(blake2_128_concat) (ElectionId, T::AccountId) => Ballot;

5 /// Maps SubjectId to a list of encrypted votes.

6 Votes get(fn votes): map hasher(blake2_128_concat) SubjectId => Vec<Cipher>;

7 }

8 }

9

10 fn verify_and_store_ballot(origin: &T::AccountId, election_id: &ElectionId, ballot:

Ballot) -> Result<(), Error<T>> {↪→

11 let unique_id: Vec<u8> = origin.encode();

12 let public_key: Vec<u8> = PublicKey::get(&election_id);

13 let params: PublicParameters = Self::get_params(election_id);

14 match ballot.verify(&params, &public_key, &unique_id) {

15 Ok(_) => Ok(Self::store_ballot(origin, election_id, ballot)),

16 Err(_) => Err(Error::<T>::PublicKeyProofError)

17 }

18 }

19

20 fn store_ballot(origin: &T::AccountId, vote_id: &ElectionId, ballot: Ballot) {

21 Ballots::<T>::insert((&vote_id, origin), ballot.clone());

22 for (subject_id, cipher, _) in ballot.answers.iter() {

23 let mut votes: Vec<Cipher> = Votes::get(&subject_id);

24 votes.push(cipher.clone());

25 Votes::insert(&subject_id, votes);

26 }

27 }

Listing 4: Storing ballots and separating vote ciphertexts by subject to simplify tallying.

Tally

At the appropriate time, the VA can start the counting-process by calling the extrinsic.
This will homomorphically add all ballots and store them in the EncryptedTallies map
(Listing 5). In turn, each sealer will fetch the computed sum, decrypt it, and submit it
with the proof of correct decryption: if the proof is valid, the decrypted share is saved.
Once all shares have been submitted, the VA can trigger the final decryption-step to
reveal the plaintext count of “yes” votes. The results are persisted in the Tallies map by
election. The homomorphic-sum and the final decryption-step do not require any proof,
as they can be verified with all the publicly available information.

7.2 Technical Limitations

The prototype shows minor technical limitations, which can be addressed in future work.
For example, certain checks are not enforced: the randomizer signature is not actually
requested, hence a voter may possibly cast multiple ballots.
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1 decl_storage! {

2 trait Store for Module<T: Trait> as ProvotumModule {

3 /// Homomorphic-sum of encrypted votes

4 EncryptedTallies: map hasher(blake2_128_concat) SubjectId => Cipher;

5 /// Decrypted shares

6 DecryptedShares: map hasher(blake2_128_concat) SubjectId => Vec<Vec<u8>>;

7 /// Maps a vote to a list of results: [topic, yes, no, total].

8 Tallies: map hasher(blake2_128_concat) ElectionId => Vec<Tally>;

9 }

10 }

11

12 /// Sets tallying-phase, computes homomorphic-sum.

13 fn set_tallying_phase(origin, vote_id: ElectionId) {

14 let who = ensure_signed(origin)?;

15 ensure_voting_authority::<T>(&who)?;

16 let phase = VotePhase::Tallying;

17 set_phase::<T>(&vote_id, phase.clone());

18 Self::sum_ballots(&vote_id);

19 Self::deposit_event(RawEvent::VotePhaseChanged(vote_id, phase));

20 }

21

22 /// Stores a decrypted share.

23 fn submit_decrypted_share(origin, vote_id: ElectionId, subject_id: SubjectId, share:

Vec<u8>, proof: DecryptedShareProof) {↪→

24 let who = ensure_signed(origin)?;

25 ensure_sealer::<T>(&who)?;

26 Self::verify_and_store_decrypted_share(who.clone(), vote_id, subject_id.clone(),

share.clone(), proof)?;↪→

27 Self::deposit_event(RawEvent::DecryptedShareSubmitted(who, subject_id, share));

28 }

29

30 /// Combines decrypted shares into a final plaintext-tally.

31 fn compute_tallies(origin, vote_id: ElectionId) {

32 let who = ensure_signed(origin)?;

33 ensure_voting_authority::<T>(&who)?;

34 Self::combine_decrypted_shares(&vote_id);

35 }

Listing 5: Tallying
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Chapter 8

Evaluation

This chapter evaluates the proposed design and prototype. First, we analyze the e-voting
security properties of the novel design and prove that Receipt-Freeness is achieved, while
maintaining the remaining security properties. Afterwards, in Section 8.2, we evaluate
the implemented prototype in terms of scalability, showing that it is possible to scale to
nation-wide votes.

8.1 Security Analysis

The following table is a revision of the threats, firstly reported in Section 5.2, which are
mitigated through the new design. The main focus of this thesis was to bring Receipt-
Freeness to the Provotum scheme.

ID Title Threat Mitigation

T2 Lack of Receipt-Freeness A dishonest voter can easily
reconstruct her own ballot to
produce a receipt of her vote.
It requires storing the random-
ization parameter used to en-
crypt the vote.

The introduction of the ran-
domizer adds Receipt-Freeness
to the scheme.

T3 Forced abstention A coercer can stop a voter from
voting by simply requiring the
voter to submit her ether.

Tokens are not present in the
Substrate chain.

T4 Missing channel assumption The protocol assumes the exis-
tence of an authenticated, un-
tappable channel between seal-
ers and VA. Without it, any-
one could in practice regis-
ter their wallet as a sealer
or run a MITM attack when
fetching the BC’s configura-
tion. This could be used to
takeover the network using seg-
mentation attacks/51% attack.

Addressed in design.
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T5 Missing BC assumption Reusage of the same BC for
multiple votes could allow a
voter to participate in the dis-
tributed key generation pro-
cess. As shown in further find-
ings (Table 5.6), due to im-
plementation issues (not the
protocol), the adversary could
block the vote and force a retry
or manipulate the tally.

Addressed in design.

T10 Lack of ballot weeding The protocol does not specify
any protection against ballot
reuse. As shown by Cortier
and Smyth [50], if an adversary
were to copy ballots of a user,
this can be exploited to deter-
mine who voted for which can-
didate. However, this attack
is only applicable on very low-
scale votes.

Added ballot weeding of any
ballot, which is either an ex-
act copy of the ciphertext or a
DCP ZKP.

T11 Session hijacking The token issued by the IdP
can be stolen or bought. This
impedes an eligible citizen from
voting, while allowing an ad-
versary to vote, bypassing au-
thentication.

Removed use of the token.

T12 Token selling The IdP token can be easily
transferred to a vote buyer.
Note that this is an issue with
many remote voting systems,
including postal vote.

Removed use of the token.

T15 IdP & AP collusion Collusion of the IdP and AP
would allow linking a ballot to
an identity.

Removed AP.

T17 AP forges identities A malicious AP could fund
wallets of arbitrary users, al-
lowing them to bypass authen-
tication.

Removed AP.

T18 AP voting A malicious AP could create
and fund its own wallets, allow-
ing it to bypass authentication.

Removed AP.

Table 8.2: Mitigated threats

8.1.1 Ballot-Secrecy

Thanks to the DKG, the secrecy of a ballot (made public on the bulletin board) is provided
under the assumption that at least one sealer remains honest – as all authorities are
required in order to decrypt any value. The ballot ZKPs, do not leak any information,
thus the ballot remain secret.
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The secrecy of the ElGamal scheme has already been proven in previous work, and will not
be further discussed here. However, the add-on – the Randomizer – warrants additional
analysis. In order to achieve BS, we need to show that the randomizer does not learn the
contents of any ballots it randomizes.

The randomizer receives the ElGamal encrypted ballot, two DCP proofs, one wFS, and one
sFS. The secrecy of the encrypted ballot relies on the DDH as mentioned [13]. The DCP
proofs are NIZKPs and thus leak no information under the random oracle assumption.
The randomizer then simply computes an encryption of 0 and adds it to the original
ballot. In order to do this, no further information is needed on the ballot. Thus, the
randomizer learns nothing about the voter’s choice.

8.1.2 Correctness

The correctness of the tally is given thanks to the use of DCP to prove the correct
decryption of the values. The usage of the BC as a public bulletin board allows anyone,
voters included, to verify the correctness of the execution.

A ballot will provably contain only 0 or 1, assuming that voter and randomizer do not
collude. This is due to the fact that the re-randomized ballot will apply the weak Fiat-
Shamir (wFS) transformation to yield a diverted proof for the ballot. The wFS heuristic
has been shown [29] to be flawed, in that a prover can construct a proof that also verifies
if the value does not lie in the correct range. Assuming either the voter or the randomizer
remains honest, an incorrect ballot will not be recorded on the PBB.

If a voter is malicious, but the randomizer is honest : the voter must deliver a ballot proof
using the strong Fiat-Shamir (sFS) transformation to the randomizer, which it verifies.
Thus, the wFS cannot be used in this case.

If a randomizer is malicious, but the voter is honest : the randomizer must produce a
proof of correct re-encryption using the sFS. The proof of re-encryption proves to the
voter that the ballot still encrypts the original message m, as intended by the voter. So,
the randomizer could not construct an invalid ballot and prove to the voter that the
re-encryption still represents the intended message m, without the voter having noticed
it.

As such, the only scenario in which an invalid ballot could be cast, is in case of collusion
between a randomizer and a voter, which unfortunately raises the trust in the randomizer.
Future work could try to derive a divertible proof applying the sFS heuristic instead of
wFS.
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8.1.3 Receipt-Freeness

To show that it is receipt-free, there are a couple of observations to highlight:

• A voter does not at any point learn the nonce used in the randomization. Due
to this, she cannot reconstruct the ballot which goes on the PBB. Proofs that the
randomizer produces are all ZKPs and, as such, do not leak the randomization
witness: if the voter were to redo the process, the randomizer would use a new
nonce – hence, the randomization of the ballot is not reproducible. Conversely, it is
important to note that if the randomizer and the voter (or the vote buyer) were to
collude, RF would not hold anymore. BS, however, remains intact.

• The voter receives a designated-verifier proof of correct re-encryption. This means
that the proof is not transferable to a third-party for verification: if it were, a
voter could send her ballot, the re-encryption proof, and the encrypted ballot on
the PBB, and any third-party could verify the relation, breaking RF. The use of the
designated-verifier proof means that the proof makes sense to Alice (the voter), but
not to a vote seller.

• The diverted DCP proof of validity is chosen uniformly at random and is thus in-
distinguishable from the original proof. The initial version of the algorithm used
for this thesis did not fully render the proof indistinguishable, and would thus leak
information which would break RF. This was on account of the fact that the ini-
tial draft did not blind the commitments, but only the response-part of the DCP
proof. In order to achieve RF, the voter must not be able to reproduce any piece of
information on the PBB – this includes the proof. Simply blinding the ballot, but
being able to reproduce the proof (which uses the same nonce, among other ran-
dom parameters employed for the encryption), would indicate that the voter knows
the nonce used in the encryption with non-negligible probability. Thus, it would
be possible to determine a relation between the proof produced by a voter and her
ballot, posted on the PBB. While it is not yet entirely proving how a voter voted,
this might be enough to convince a vote buyer. For this reason, it is important to
fully blind the proof which goes on the PBB.

8.1.4 Coercion-Resistance

The system does not provide Coercion-Resistance.

Swiss legislation does not permit to cast multiple ballots, which is often mentioned as
a way to provide CR. However, since the voter’s wallets would be known to coercers,
multiple ballots from the same address would not protect a voter from repercussions,
which is the main point of CR. Provotum 2.0 [7] also did not provide CR.
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8.1.5 End-to-end Verifiability

In order for a system to fulfill End-to-end Verifiability, a system has to provide the fol-
lowing properties.

Cast-as-Intended

The system at present does not provide CaI. The only means of auditing the contents of a
ballot would be to record the nonce employed in the encryption and use it to reconstruct
the pre-randomization ballot. The recreated pre-randomization ballot, together with the
proof of randomization, can be used to audit the contents of an encrypted ballot as
published on the PBB. Recording the nonce, might increase the attack surface for an
attacker to learn the contents of the voter’s ballot.

Many systems advertise possessing CaI under the assumption of an honest client device.
However, this seems unjustified in the context of remote voting. It is hard to have confi-
dence that a voter’s personal computer would be properly maintained, patched, and free
of malware. Provotum 2.0 [7] was also missing CaI.

Recorded-as-Cast

Once the ballot and proof have been cast, these are stored directly on the BC without
going through intermediaries. As such, a voter can easily verify that the ballot was
recorded as cast, by checking if the generated ballot and proof match what is stored on
the chain.

Counted-as-Recorded

With the information stored on the BC (i.e., ballots and proofs), anyone, including the
voters, can verify that the steps were computed correctly. Any attempts at manipulation
would be immediately noticeable to any observer.

In conclusion, due to the missing Cast-as-Intended property, the system does not fulfill
End-to-end Verifiability.

8.1.6 Eligibility Verifiability

The identity provider (IdP) is responsible of verifying voter-eligibility. The BC verifies
that each ballot comes from an address, which was verified through blind signatures
provided by an IdP.

Thanks to this mechanism, the IdP cannot trace an identity to a wallet address and to a
ballot.
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The IdP remains, however, a central weak-point in the scheme, as a rogue IdP could:

• sign its own wallets to participate in the vote, which could go undetected, as not all
registered voters would vote.

• deny signatures to suppress voters, which would be noticeable.

Additionally, a mechanism based on blind signatures provides also concerns on the more
practical side. In particular, the following two points are possible examples, both relating
to the security of the voter’s credentials, but handling two different aspects:

• If a voter’s credentials were stolen and used to sign an address and cast a ballot:
the voter would notice when requesting a signature, as the IdP would refuse, since
it already signed a message for the same voter. The ballot, however, could not be
invalidated, since no one, aside from the thief, would know the thief’s address.

• Swiss law (VEleS, Art. 4) states: “If the client-sided authentication measure is
sent electronically, voters who have not cast their vote electronically must be able to
request proof after the electronic voting system is closed and within the statutory ap-
peal deadlines that the system has not registered any vote cast using their client-sided
authentication measure.” [66]. The system could provide proof that the credentials
were used to register an address, as the IdP could store the blind signature and the
identity of a voter. However, definitive proof of whether a vote was effectively cast
would not be possible.

8.2 Scalability

In order to apply the system to real-world vote, it is necessary for the system to be able
to scale. First, we draft the theoretical runtime from counting the number of modular ex-
ponentiations. Afterwards, we give a quantitative evaluation of the performance through
benchmarks.

Modular exponentiations (modExp) are the most computationally intense steps of many
cryptographic algorithm [67]. As such, we can often compare the performance of schemes
based on the amount of modExp operations conducted. In particular, we are interested
in the number of operations as a function of votes cast. With the help of Table 8.3, we
estimate the increased computational cost of Provotum 3.0 in comparison to Provotum
2.0, for a single election with two choices. Provotum 2.0 had a total of 17 modExp per
ballot, while the performance penalty of adding Receipt-Freeness is 26 additional modExp
operations. The computation is divided between the randomizer (18 operations) and the
voter (8 operations), with no additional overhead to the BC network.

In order to gauge the real-world performance of the algorithms, we run benchmarks of
the voting algorithms. Ideally, the runtime of any protocol should grow linearly with the
number of voters and votes cast. To get an idea of the order of magnitude of the tests,
we can take a look at past votes in Switzerland to gauge voter participation. The popular
vote of the 27th September 2020, had a voter turnout of around 3’000’000. Thus, the
following evaluations takes 1’000’000 as a target value.
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Provotum 2.0 Provotum 3.0

Step Voter BC Voter BC Randomizer

Ballot Encryption 3 3

DCP generation 6 6

Re-Encr. proof generation 2

Re-Encr. proof verification 2

DCP randomization 6 16

DCP verification 8 8

Homomorphic sum

Total by entity 9 8 17 8 18

Total 17 43

Table 8.3: Number of modExp operations by entity, in order to cast a single “yes” or “no”
vote.

As mentioned in the security analysis in Chapter 5, to avoid availability issues, it would
be best to run the on-chain steps off-chain and then to publish them. Thus, we evaluate
directly the performance of the algorithms.

The benchmarks were computed by running the given algorithm on an otherwise idle ma-
chine. Each algorithm ran at least 10 times and up to 100 times, depending on the runtime
of a single iteration. All of the line charts illustrated below use logarithmic scales on both
axis – thus, a straight 45 degree slope represents a linear growth. The tests ran on a
DigitalOcean server1 on server-grade hardware: a dedicated 32-core CPU Intel Xeon Gold
6140 CPU, running at 2.30 GHz per core, and 64GB RAM. The total runtime to com-
pute all benchmarks was approximately 315 minutes, while the estimated monthly cost of
operation is 640$.

Firstly, the possible bottlenecks of the Provotum scheme have to be identified. These are
protocols which require operating on many elements at the same time, or in a short period
of time. The pre-voting phase, which involves only the set of sealers and the VA, does
not need to scale, as this would involve few entities and is not time-critical. Then we
have voter-registration. The BC is responsible of verifying the signatures of every eligible
voter.

The benchmark in Figure 8.1a shows a very clear linear progression and places the runtime
of verifying 106 signatures at an average of 13.48 seconds, with a throughput of 74.186
Kelements per seconds. Figure 8.1b shows the probability density function (PDF) of
verifying 106 signatures over 10 iterations of the benchmark. The area under the curve
reflects the probability of any given run to achieve a certain runtime.

1https://www.digitalocean.com/

https://www.digitalocean.com/
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(a) Verification of 103 to 106 RSA signatures (b) PDF over 10 iterations at 106 signa-
tures to verify

Figure 8.1: Runtime for verifying RSA signatures

The voting phase is composed of (i) the ballot generation protocol on the voter’s client
device, (ii) the interactive randomization protocol, and (iii) the ballot verification proto-
col. Of the three, the first only runs once on each device. The second protocol is more
involved and includes multiple messages sent between the voter and the randomizer. This
step needs to scale to allow many voters to participate in the vote. However, this can scale
easily by adding multiple load-balanced randomizer entities, or replacing the randomizer
server with a hardware token, which would completely eliminate the scalability issue. The
third step, is the biggest bottleneck, because the PoA BC can be seen as a single unit of
computing: due to the Aura consensus algorithm, whoever turn it is when it receives a
ballot, will need to verify it. The BC does not provide any benefit in terms of scalability,
as it does not pool its computational resources. For this reason, we further analyse the
runtime of the ballot validity proof (DCP) verification.
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Figure 8.2: Runtime for verifying DCP proofs

Figure 8.2 shows the runtime for verifying DCP proofs, for increasing amount of ballots.
The benchmark cast 1’000, 10’000, 100’000, and 1’000’000 ballots to verify. The runtime
demonstrates a linear growth, with a mean and median runtime of about 1510 seconds
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and a throughput of 662 elements per seconds. This is the slowest algorithm to compute.
This places it last in terms of speed among all protocols, which is to be expected as the
verification of the DCP proofs requires the most modular exponentiations than any other
algorithm (i.e., 8 modExp per ballot).

Finally, we have the computation of the final tally in the post-voting phase. This is
composed of the homomorphic sum and decryption of the resulting ciphertext.

(a) Homomorphic sum of 103 to 106 ballots
(b) PDF over 100 iterations at 106 ballots

Figure 8.3: Runtime for the homomorphic sum of ballots

(a) Decryption of the sum of 103 to 106 ballots (b) PDF over 10 iterations of the decryp-
tion of 106 ballots

Figure 8.4: Runtime for decrypting the tally of ballots

Figure 8.3 and Figure 8.4 present the runtime of computing the homomorphic sum of
up to 106 ballots and the final decryption of the tally. Again, they clearly demonstrate
a linear growth with the number of ballots to operate on. It took an average of 1.05
seconds to sum up to 106 ballots and 6.7 seconds to decrypt the tally, with a throughput
of 949 Kelements per second for the sum. As the decryption only operates on a single
element (the ciphertext resulting from the sum of ballots), the throughput would not be
meaningful in this context. Additionally, the time to decrypt the ballot is directly tied
to the number m of “yes” votes, as the algorithm decrypts by brute-force searching for a
value i, such that gi = gm (mod p), for i = 0, 1, . . . , N , where N is the total amount
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of ballots cast, m < N , and gm is the sum of all ballots. Taking again the results of
the past votes as an example, the tally was set at 50%, i.e., half of the ballots were “no”
votes, and the other half were “yes” votes. So, the decryption of the sum of 1′000′000
ballots is equivalent to computing gi = gm (mod p) 500′000 times. If all votes were “yes”
votes, the decryption would take double the time, while if all were “no”, it would complete
immediately on the first attempt.

The benchmarks clearly show that while the system is scalable, the throughput of verifying
the validity of the ballots is the bottleneck. One possible mitigation would be to separate
ballots in three separate storage items: one for incoming, one for verified, and one for spoilt
ballots. The system would then process pending ballots and put them in the appropriate
storage after verification. The voter would then vote and check at a later time whether
the ballot was confirmed as valid. This is, however, not unlike postal voting, where a voter
casts her vote, but does not receive any immediate confirmation of whether the ballot is
valid or not.



Chapter 9

Summary and Conclusions

This thesis set out with the goal of improving on the existing Provotum design and pro-
totype [7]. One of the first step was to conduct a security analysis, in order to highlight
attack vectors and limitations, which could be addressed in a new iteration of Provotum.
This analysis brought to light a few new issues (Chapter 5), along some limitations pre-
viously known: the lack of Receipt-Freeness, the small key size due to the lack of support
in the Ethereum VM, and issues with identity management, which would allow any user
with tokens to vote, not only eligible voters.

With the discovered issues, a new version of Provotum was designed – called Provo-
tumRF – in a nod to BeleniosRF [49]. This new version brings Receipt-Freeness to the
blockchain-based voting scheme Provotum. The prototype was rebuilt from the ground
up using Substrate, to allow for arbitrarily large keys. The newly implemented proto-
type provides the same notions of ballot privacy and decentralization as its predecessor:
(i) cryptographic material is generated on the voter’s device, (ii) all proofs are verified
on-chain in a fully transparent manner, and (iii) the distributed key generation scheme
ensures that no single authority can break the secrecy of the vote. The new prototype
then adds (i) Receipt-Freeness – in the form of a new entity called randomizer – and (ii)
enforces voter-eligibility – through a blind-signature-based protocol. Finally, the use of
Parity’s Substrate provides the foundation for future work. An evaluation of the design
in terms of the security properties defined in Chapter 3 and of the prototype in terms of
scalability, concludes this thesis in Chapter 8.

9.1 Future Work

Any work worth mentioning should provide a starting point for future work, and Provo-
tumRF is no different. Inputs for future work range from usability to the never-ending
open-problem of decentralized identity management.

63
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9.1.1 Cast-as-Intended

Cast-as-Intended is provided only under the assumption that the voter has the crypto-
graphic skills required to audit the ballot. Thus, future work would investigate approaches
to be used to bring individual verifiability to the masses, in a decentralized setting. One
such approach could be the use of dedicated, air-gapped smartphones, or devices similar
to the ones used for online-banking services. Such systems could carry out the needed
cryptographic operations, while being understandable to the layman. The federal ordi-
nance VEleS [66] has a provision dedicated to this: “If the voters use a special technical
aid for verification, this must have been specifically developed for the secure storage of
secret elements and for carrying out cryptographic operations, such as devices used for
secure home-banking. In addition, the voters must be able to convince themselves of the
fact that the aids operate correctly by casting test votes.”

9.1.2 Multi-Way Elections, Limited Votes and Write-ins

Electronic voting is a complex field of research. So much so, that even the simplified
model of a binary vote already brings considerable challenges to the table. The prototype
does not provide any support for other types of vote. A simple scheme for limited votes,
in which voter choose k out of N candidates, is provided in Hirt [33]. It proposes to
encode the choices in a binary vector, where each element represents a candidate. All
operations are then conducted element-wise, and a proof that the sum of the elements of
the vector is in the range [0, k] is provided in addition. Schemes for multi-way elections,
where voters select a single candidate out of N , can either be modelled as a special case
of k-out-of-N election. Write-ins are another type of election, commonly found in many
countries, which is missing from Provotum. An interesting approach can be found in
Kiayias and Yung [68]. It combines a mix-net approach with homomorphic encryption,
in order to leverage the performance of homomorphic encryption with the flexibility of
mix-nets. The possibility to cast spoilt ballots, usually done in sign of protest, is also
missing.

9.1.3 Decentralized Identity Management

Privacy and eligibility verifiability remain in stark contrast to one another. While Provo-
tumRF improves the situation of identity management, the identity provider remains a
trusted third-party system (TTP). As Nick Szabo stated: “Trusted Third Parties Are
Security Holes” [69]. We simplify the model and reduce the scope of the work by assum-
ing the existence of trusted components, but in essence we are shifting the responsibility
of security around. Therefore, a system which does not rely on a TTP component for
identity management should definitely be further investigated.
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Abbreviations

sFS strong Fiat-Shamir
wFS weak Fiat-Shamir

AP Access Provider
API Application Programming Interface
BC Blockchain
BS Ballot-Secrecy
CaI Cast-as-Intended
CaR Counted-as-Recorded
CR Coercion-Resistance
DCP Disjunctive Chaum-Pedersen
DDH Decisional Diffie-Hellmann
DKG Distributed Key Generation
ETH Ethereum
E2E-V End-to-End Verifiability
HTTP Hypertext Transfer Protocol
IdP Identity Provider
IND-CPA INDistinguishability under Chosen-Plaintext Attack
I/O Input/Output
IV Individual Verifiability
MITM Man-In-The-Middle
NGO Non-Governmental Organization
NIZKP Non-Interactive Zero-Knowledge Proof
PoA Proof-of-Authority
PoS Proof-of-Stake
PoW Proof-of-Work
PBB Public Bulletin Board
PBFT Practical Byzantine Fault Tolerance
RaC Recorded-as-Cast
REV Remote Electronic Voting
RF Receipt-Freeness
RFC Request For Comments
RPV Remote Postal Voting
RSA Rivest-Shamir-Adleman
SC Smart Contract
TTP Trusted Third-Party
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72 ABBREVIATONS

UP Unconditional Privacy
UV Universal Verifiability
VA Voting Authority
VEleS Verordnung der BK vom 13. Dezember 2013 über die elektronische Stimmabgabe
VM Virtual Machine
Wasm WebAssembly
ZKP Zero-Knowledge Proof



Glossary

Access Provider (AP) An Access Provider is a first-party system acting on behalf of
the voting authority, as a gatekeeper.

Authorization Authorization is the decision whether an entity is allowed to perform a
particular action or not, e.g. whether a user is allowed to attach to a network or
not.

AURA PoA round-robin consensus algorithm. Each sealer takes turn to produce a block.

Ballot A method to achieve secret voting. Some container for a vote which is kept secret.

Blockchain An append-only, immutable, distributed database, managed by a peer-to-
peer network.

Ballot-Secrecy Property of a REV system which does not disclose a voter’s vote.

Cast-as-Intended Property of a REV system which allows a voter to audit the contents
of her own ballot, as a mitigation against malicious voting devices.

Identity Provider (IdP) An Identity Provider is a trusted third-party that verifies the
identity and eligibility of a voter.

Distributed Key Generation (DKG) Process by which multiple entities collaborate
to create a key pair.

Fiat-Shamir heuristic Process through which a ZKP can be turned into a NIZKP by
replacing the verifier’s random challenge with a cryptographic hash of the protocol’s
transcript.

Public Bulletin Board (PBB) A PBB is a component which provides an authenti-
cated channel, providing transparency and verifiability to many schemes. It’s main
properties are [47]:

• Information can only be appended, not removed or modified.

• The board is public, i.e., anyone may read the board.

• The board provides a consistent view to any viewer.

Proof-of-Authority (PoA) Consensus algorithm where a set of known authorities take
turns in producing blocks. Identity at stake.
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Proof-of-Stake (PoS) Consensus algorithm where the ability to produce blocks is tied
to the influence of an entity in the network. Generally, tied to wealth.

Proof-of-Work (PoW) Consensus algorithm which requires to prove that a certain
amount of computation effort took place in order to include a block in the chain.

Receipt-Freeness Property of a REV which does not allow a voter to prove how she
voted.

Remote Electronic Voting (REV) A system to allow voting via internet.

Sealer A sealer is an entity running a node participating in the Proof-of-Authority
blockchain, as a validator.

Smart Contract (SC) A piece of software deployed on a BC that triggers automatically
based on some predefined input or condition.

Software Independence A voting system is software-independent if an undetected change
or error in its software cannot cause an undetectable change or error in an election
outcome.

Substrate BC development kit, developed by Parity.

Trusted third-party (TTP) An external component to a system meant to facilitate
communication. It is assumed to behave correctly at all times.

Voting Authority (VA) A Voting Authority is an entity coordinating the vote. The
VA is responsible for the BC bootstrapping process (with the Sealers), deploying
the SCs, and opening and closing the vote.

Zero-knowledge Proof Mathematical process by which we prove a statement, usually
knowledge of a secret, without the need to divulge it.
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Appendix A

Installation Guidelines

The source code for ProvotumRF can be found at https://github.com/provotum/

ProvotumRF.

To simplify running ProvotumRF a docker compose1 manifest accompanies the project,
ensure Docker version 19.03.13 and Docker Compose are installed 1.27.4 or higher. For
local development, NodeJs2 12.18.03 and Rust3 1.46.0 or higher are required.

To run a demo of Provotum follow the instructions in the README of the infrastructure
repository.

1https://docs.docker.com/compose/
2https://nodejs.org/en/
3https://www.rust-lang.org/
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Appendix B

Contents of the CD

This thesis is accompanied by an archive of the following items:

• A PDF file of this report

• The LATEXsource code of this report.

• The images of this report.

• The raw data from the benchmarks.

• The source code of the implemented prototype.

• The source code of the benchmarks.
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