
Mixnets in a Distributed Ledger
Remote Electronic Voting System

Moritz Eck
Switzerland

Student ID: 14-715-296

Supervisor: Christian Killer, Bruno Rodrigues
Date of Submission: March 22, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

The integrity and fair execution of privacy-preserving votes and elections is a cornerstone
of modern democracy. Changes to the voting process are delicate and highly debated,
including the introduction of remote electronic voting (REV). REV poses a unique set of
challenges as it allows citizens to cast their ballots from an uncontrolled environment (e.g.,
mobile phone). The legal and technical requirements increase the difficulty in digitizing
votes and elections as the preservation of privacy required by law is in direct contrast to
the verifiability of the system. Extensive research has been conducted over the past years
trying to satisfy these requirements by applying various cryptographic techniques. Al-
though many REV systems have been proposed in literature, few have been implemented
practically. Additionally, almost all of them pursue a centralized approach, in which a
single authority is trusted to handle the votes according to protocol. By distributing the
trust among the stakeholders in the system, similar to the federal structure of Switzerland,
and thereby preventing a single point of failure, this work takes a different approach. A
key component in the success is a distributed ledger utilized as public bulletin board to
guarantee transparency, integrity and robustness through decentralization. Using estab-
lished cryptographic techniques (e.g., mixnets, zero-knowledge proofs) this work further
enhances the scope of Provotum, a secure and verifiable distributed REV system devel-
oped at CSG@IfI, by enabling elections and shifting the computational burden from the
voter to the voting infrastructure, allowing participation from any device. The proposed
voting protocol is implemented in a proof-of-concept and evaluated in terms of privacy,
verifiability and scalability. The results show that the system can scale to nationwide
elections and votes, as the computational complexity scales linearly with the number of
ballots cast. Finally, possibilities for improvement and expansion are identified.

i

ii

Kurzfassung

Die Integrität und faire Durchführung von Abstimmungen und Wahlen unter Wahrung der
Privatsphäre ist ein Eckpfeiler der modernen Demokratie. Änderungen am Wahlverfah-
ren sind heikel und werden heftig diskutiert, darunter auch die Einführung der Internet-
gestützten, elektronischen Stimmabgabe (REV). REV stellt eine einzigartige Reihe von
Herausforderungen dar, da es den Bürgern erlaubt, ihre Stimme in einer unkontrollier-
ten Umgebung (z.B. von einem Mobiltelefon) abzugeben. Die rechtlichen und technischen
Anforderungen erhöhen die Schwierigkeit bei der Digitalisierung von Abstimmungen und
Wahlen, da das gesetzlich geforderte Stimmgeheimnis und die Privatsphäre des Wählers
in direktem Gegensatz zur Verifizierbarkeit des Systems steht. In den letzten Jahren wur-
den umfangreiche Forschungsarbeiten durchgeführt, die versuchen, diese Anforderungen
durch die Anwendung verschiedener kryptographischer Techniken zu erfüllen. Obwohl in
der Literatur viele REV-Systeme vorgeschlagen wurden, sind nur wenige davon praktisch
umgesetzt worden. Ausserdem verfolgen fast alle einen zentralisierten Ansatz, bei dem
einer einzigen Instanz vertraut wird, die Stimmen protokollgemäss zu behandeln. Diese
Arbeit verfolgt einen anderen Ansatz, indem sie das Vertrauen auf die Beteiligten im Sy-
stem verteilt, ähnlich der föderalen Struktur der Schweiz, und dadurch einen Single Point
of Failure verhindert. Eine Schlüsselkomponente für den Erfolg ist das öffentliche elektroni-
sche Anschlagsbrett, welches mittels Distributed-Ledger Technologie umgesetzt wird, um
Transparenz, Integrität und Robustheit durch Dezentralisierung zu gewährleisten. Un-
ter Verwendung etablierter kryptographischer Techniken (z.B. Mixnets, Zero-Knowledge
Proofs) erweitert diese Arbeit den Anwendungsbereich von Provotum, einem sicheren
und überprüfbaren verteilten REV-System, das am CSG@IfI entwickelt wurde, indem es
Wahlen ermöglicht und die Rechenlast vom Wähler auf die Wahlinfrastruktur verlagert,
was die Teilnahme von jedem Gerät aus ermöglicht. Als Machbarkeitsnachweis wird das
vorgeschlagene Wahlprotokoll in einem Prototyp implementiert und in Bezug auf Pri-
vatsphäre, Verifizierbarkeit und Skalierbarkeit evaluiert. Die Ergebnisse zeigen, dass das
System auf landesweite Wahlen und Abstimmungen skalieren kann, da die Rechenkom-
plexität linear mit der Anzahl der abgegebenen Stimmen skaliert. Abschliessend werden
Möglichkeiten zur Verbesserung und Erweiterung aufgezeigt.

iii

iv

Acknowledgments

I would like to express my gratefulness to the people that have supported me over the
years, in order for me to be able to accomplish this goal.

First and foremost, I would like to thank Christian Killer for guiding me in the right direc-
tion, his valuable feedback on ideas that I proposed, and for the enriching discussions we
have had. Also, I want to thank Prof. Dr. Burkhard Stiller for the opportunities through-
out my master studies and the possibility to realize this thesis under the supervision of
the Communication Systems Group.

Moreover, I would like to thank my parents for their ongoing support and for always
believing in me. And, Sina for her endless encouragement and making me smile.

I am very grateful for their support.

v

vi

Contents

Abstract i

Kurzfassung iii

Acknowledgments v

1 Introduction 1

1.1 Project Goals and Contributions . 2

1.2 Thesis Outline . 2

2 Background 3

2.1 Voting Protocol Properties . 3

2.1.1 Privacy . 3

2.1.2 Verifiability . 4

2.1.3 Practical Properties . 5

2.1.4 Trust Assumptions & Trade-Offs 6

2.2 Distributed Ledger Technology . 7

2.2.1 Permission Models & Consensus Mechanisms 7

2.2.2 DL as Public Bulletin Board . 8

vii

viii CONTENTS

3 Cryptography 9

3.1 Hash Functions . 9

3.2 Public Key Cryptography . 10

3.3 Homomorphic Encryption . 10

3.4 ElGamal Cryptosystem . 10

3.4.1 Security . 11

3.4.2 Key Generation, Encryption and Decryption 11

3.4.3 Message Encoding . 12

3.5 Re-Encryption . 12

3.6 Mixnets . 13

3.6.1 Decryption Mixnets . 14

3.6.2 Re-Encryption Mixnets . 14

3.6.3 Summary . 15

3.7 Multi-Party Computation . 16

3.7.1 Distributed Key Generation . 16

3.7.2 Cooperative Decryption . 16

3.8 Zero-Knowledge Proofs . 18

3.8.1 Key Generation Proof . 19

3.8.2 Decryption Proof . 19

3.8.3 Re-Encryption Proof . 20

3.8.4 Shuffle Proof . 21

4 Related Work 27

4.1 Application-level Privacy . 27

4.2 Network-level Privacy . 28

4.3 Everlasting Privacy . 29

4.4 Existing REV Systems . 30

4.5 Distributed Ledgers and REV . 31

CONTENTS ix

5 System Design 33

5.1 Stakeholders . 33

5.2 Voting Protocol . 35

5.2.1 Identity Management . 35

5.2.2 Pre-Voting Phase . 35

5.2.3 Voting Phase . 37

5.2.4 Post-Voting Phase . 38

6 Implementation 41

6.1 Packages . 41

6.2 Documentation . 44

6.3 Technical Limitations . 44

7 Discussion and Evaluation 47

7.1 Privacy . 47

7.1.1 Ballot Secrecy . 47

7.1.2 Receipt-Freeness . 48

7.1.3 Coercion-Resistance . 48

7.2 Verifiability . 49

7.2.1 Cast-as-Intended Verifiability . 49

7.2.2 Individual & Recorded-as-Cast Verifiability 49

7.2.3 Counted-as-Recorded . 50

7.2.4 Summary . 50

7.3 Practical Properties . 50

7.3.1 Fairness . 51

7.3.2 Accountability . 51

7.3.3 Robustness . 51

7.3.4 Votes and Elections . 51

7.4 Scalability . 52

7.4.1 Theoretical Runtime Performance 52

7.4.2 Benchmark Results . 53

x CONTENTS

8 Conclusion and Future Work 59

8.1 Conclusion . 59

8.2 Future Work . 60

8.2.1 Cast-as-Intended (CaI) Verifiability 60

8.2.2 k/n Distributed Key Generation . 60

8.2.3 Technical Improvements . 60

8.2.4 Identity Management . 61

Bibliography 62

Abbreviations 73

List of Figures 73

List of Tables 76

A Installation Guidelines 79

B Contents of the CD 81

Chapter 1

Introduction

The integrity and fair execution of privacy-preserving votes and elections is a cornerstone
of modern democracy. Any changes to the voting process are delicate and highly debated,
including the introduction of remote electronic voting (REV) [75]. The design and imple-
mentation of REV systems pose a unique set of challenges to be tackled and additional
properties to be achieved. REV in particular allows citizens to cast their ballots remotely,
from an uncontrolled device and in an uncontrolled environment (e.g., from a web browser
or mobile phone). The legal and technical requirements increase the difficulty in digitiz-
ing votes and elections as the preservation of privacy required by law is in direct contrast
to the verifiability of the system. Another common issue with REV systems is that the
existence of a public bulletin board (PBB) used to store, audit and trail every step of
a vote is often formulated as an assumption in related work [64]. Due to these opera-
tional and practical issues, the Provotum project focuses on the design and architecture
of such a PBB, including its distributed execution. Compared to other REV systems in
which a centralized authority is trusted to handle the votes according to protocol (i.e.,
no decrypting before the vote has ended, no publishing of voter specific information), the
Provotum project takes a different approach. Trust is distributed among the stakeholders
in the system, similar to the federal structure of Switzerland and thereby preventing single
points of failure. A key component in this distribution of trust play distributed ledgers
(DL), an exciting advancement in distributed systems research. DLs are an immutable,
append-only, publicly-readable, distributed data structure making them an ideal candi-
date for PBBs in REV systems as the necessary transparency, robustness and integrity
guarantee are inherent. In addition, a wide variety of approaches (e.g., distributed key
generation and zero-knowledge proofs) are explored towards the goal of achieving a fully
decentralized REV system [66, 72, 73, 81, 82].

Research on verifiable REV systems can be grouped into three main categories; systems
based on (1) homomorphic encryption (HE), (2) mixnets and (3) commitment schemes.
REV systems utilizing HE make use of the mathematical properties of the underlying
cryptosystem which allows the result of a vote to be computed without decrypting indi-
vidual ballots. This approach has been thoroughly investigated so far in the Provotum
project [72, 73, 81, 82]. The approach is conceptually simple but depending on the appli-
cation, it does not scale past small numbers of participants. In addition, the solution is
computationally expensive for the individual participants as a proof of validity must be

1

2 CHAPTER 1. INTRODUCTION

provided for each ballot cast. Alternatively, mixnets employ a different approach. They
are based on cryptographically mixing the ballots to ensure unlinkability between the
voter and her ballots. An advantage of using mixnets is that the computational burden
is shifted from the voter to the voting infrastructure, allowing voters to participate from
any device. Another important facet when compared to HE, is the decreased ballot com-
plexity and that no ballot validity proof is necessary. For instance, elections and write-ins
(for additional candidates) are easier to implement in mixnets because during the tallying
the individual ballots are decrypted and counted, as opposed to just the final result (as
in the case of HE). Still, mixnets have their own challenges, as proving that mixing was
done honestly and correctly is computationally expensive. Improvements in this area are
still an active field of research.

1.1 Project Goals and Contributions

The thesis main goal is to tackle the limitations of homomorphic tallying based REV
systems (e.g., Provotum 2.0 [72] and 3.0 [66]) by replacing them with a mixnet-based
approach. To propose a more suitable system architecture, an analysis of prior work on
verifiable mixnets is performed. The new system shall be designed using an extendable
software architecture keeping in mind the desired privacy properties of REV systems. The
prototype shall be developed with a focus on verifiability and scalability, evaluating if it
can be applied for nationwide votes. Remaining limitations and other technical challenges
must be documented and addressed such that they can be tackled in future work.

1.2 Thesis Outline

The remaining part of this thesis is structured as follows. Chapter 2 introduces the privacy,
verifiability and practical properties required to asses REV systems. It establishes the
most important concepts required to understand the remaining part of this thesis. Also,
it provides a short introduction into distributed ledger technologies and how those can be
leverage as a PBB. Next, Chapter 3 provides an in depth explanation of the cryptographic
primitives applied in the proposed voting protocol. Chapter 4 presents prior academic and
commercial work on REV systems with a focus on mixnets, its different variations and
applications. Then, in Chapter 5, the system’s architecture is denoted, the different
stakeholders are introduced, as well as the voting protocol that this thesis is based on
is explained. Chapter 6 describes the implementation and introduces the underlying
components and packages that the system is composed of. Subsequently, in Chapter 7
the proposed system is evaluated in terms of privacy, verifiability, practicality as well as
scalability. Finally, Chapter 8 concludes this thesis by summarizing its achievements and
suggesting potential future research and implementation possibilities.

Chapter 2

Background

Any type of voting that involves electronic means can be considered as electronic vot-
ing [69]. The literature [103] differentiates between two major types that use an electronic
apparatus to cast, record and count votes; electronic machine voting (EMV) in a fixed
public place and electronic distance voting (EDV) from different locations. In the con-
text of this thesis, we define the term remote electronic voting (REV) as a synonym of
Internet Voting, a subtype of EDV in which voters cast their ballots in an uncontrolled
environment. To be able to understand how REV systems work, knowledge of different
concepts is required, which is introduced in this chapter. The first section, discusses the
main properties central to REV systems and their inherent contradiction. The second
part, introduces distributed ledger technology and how they are applicable in the context
of REV systems.

2.1 Voting Protocol Properties

From the academic literature [67] and the legal framework in Switzerland [31, 29, 32], a
set of desireable properties for REV systems has emerged over the past decades. The def-
inition of these properties varies between authors. Therefore, this section aims to provide
an overview of the definitions, necessary to discuss REV systems, as understood and in-
terpreted in this work. Jonker [67] provides a broad overview of the various properties and
forms the basis for the definitions. The properties can be group into two main categories,
Privacy and Verifiability.

2.1.1 Privacy

Privacy in voting is considered a fundamental human right as stated in the Swiss Consti-
tution [30] and the universal declaration of human rights [8]. In other words, keeping the
content of a ballot secret is of utmost importance. Especially, considering that in a REV
system the voters cast their votes in an uncontrolled environment and from an uncon-
trolled device (e.g., mobile phone). In the literature [67], privacy is futher grouped into:
(1) Ballot Secrecy (BP), (2) Receipt-Freeness (RP) and (3) Coercion-Resistance (CR).

3

4 CHAPTER 2. BACKGROUND

Definition 1 Ballot Secrecy. In a REV system with BS, it is impossible to determine for
anyone (apart from the voter) how a voter has voted and to link cast ballots to a specific
voter [19].

Definition 2 Everlasting Ballot Secrecy. Everlasting BS extends the notion of BS to a
computationally unbounded adversary for whom it is also impossible to determine how a
voter as voted and to link cast ballots to a specific voter [67].

Mixnet- and HE-based REV systems are built upon the primary assumptions of asymmet-
ric cryptographic, the intractability of mathematical problems, as explained in Sections 3.2
and 3.4.1. Should these assumptions no longer hold due to a computationally unbounded
adversary appearing at some point in the future, BS would no longer be given since bal-
lots could be decrypted and votes could be linked to voters. Therefore, everlasting BS
is stronger, information-theoretic guarantee not offered by any REV systems relying on
asymmetric cryptography [23].

Definition 3 Receipt-Freeness. In a REV system guaranteeing RF, it is impossible for a
voter to prove to a third-party (e.g., a vote-buyer) how she1 voted [67].

Definition 4 Coercion-Resistance. CR extends the notion of RF by ensuring the protection
of the voter against forced abstention, randomized voting or (un-)willingly giving up voter
credentials. CR is a stronger privacy guarantee than RF as it does not differentiate between
honest and malicious voters [67].

REV protocols in early work, such as [20], issued receipts upon casting a ballot, providing
the voter the ability to trace its ballot on the bulletin board. It was quickly discovered [11]
that this is flawed and facilitated vote-buying and coercion of the voter which brought
about the notion of RF and CR. It is argued [67, 70] that in REV systems RF and CR are
more important than in traditional voting due to the simplified scalability of vote-buying
given digital receipts.

2.1.2 Verifiability

Verifiability is a major component in building and ensuring trust in any kind of voting
system. In paper-based voting systems, the voter cannot verify that her ballot has been
correctly included and counted as a part of the tallying process. She must trust the post,
the government and the poll workers that each one performs their duties truthfully. In
REV systems, the situation is even more problematic as physically observable processes
(e.g., mailing a ballot or anonymizing a ballot) are absent. Therefore, techniques are
required that allow a voter to verify the correct and truthful execution of the voting
protocol. The literature [67, 94] presents various forms of verifiability.

1In cryptography and REV literature, Alice and Bob are common fictional characters used to explain
protocols or interactions. To keep in line with the standard, Alice the voter is female and thus referred
to with her pronouns.

2.1. VOTING PROTOCOL PROPERTIES 5

Definition 5 Individual Verifiability (IV). In a REV system supporting IV, a voter can
verify that her ballot has been included in the recorded set of ballots [94].

Definition 6 Universal Verifiability (UV). In a REV system supporting UV, anyone (e.g.,
another voter or a third-party) can verify the outcome of the vote i.e., that the recorded
set of ballots corresponds with the result [70, 74].

IV on its own is insufficient in guaranteeing verifiability in a REV system, as it is based
on trusting other voters to verify that their cast ballots are included in the recorded set of
ballots. To enable public audits of a vote in an efficient manner, UV is required [32, 94].
Alternatively, the literature defines a property similar to the combination of IV and UV
but which additionally includes an assertion that the vote has been encrypted as intended,
it is referred to as E2E verifiability [77].

Definition 7 End-to-End Verifiability (E2E-V). A REV system supporting E2E-V is sim-
ilar to IV and UV but instead composed of three parts [67, 74, 94]:

• Cast-as-Intended (CaI) verifiability enables a voter to verify that her intended
vote is included in the ballot.

• Recorded-as-Cast (RaC) verifiability requires that a voter can verify that her
ballot has been recorded without being altered.

• Counted-as-Recorded (CaR) verifiability means that the voter can verify that
all valid, recorded votes have been correctly counted.

CaI is an necessity in any REV system to remedy the problems of casting ballots in
an uncontrolled environment and from uncontrolled devices (e.g., mobile phone) [76].
Otherwise, it is possible for a malicious voting client to encrypt something else than
the voter’s choice and the voter would have no way of realizing this. On top of that,
a malicious voting client could also encrypt multiple votes using the same randomness
leading to identical ballots. Among other things to avoid clash attacks, i.e., replacing
identical ballots by an adversary, identical ballots are rejected by most REV systems [78].

2.1.3 Practical Properties

The literature defines additional properties which cannot be grouped into the two main
categories [67, 70, 74, 94] and more practical. The most important ones are described
below.

Definition 8 Fairness. In a fair REV system, it is impossible for anyone to compute an
intermediary result before the end of the voting period [50].

Fairness is required to avoid that anyone can influence the outcome of a vote, by computing
a partial tally and distributing it, while the vote is still running.

6 CHAPTER 2. BACKGROUND

Definition 9 Accountability. In an accountable REV system, misbehaving parties (e.g.,
authorities) can be identified and excluded [76].

E2E-V is insufficient in practice, REV systems also need to be accountable in order to
guarantee the correct execution of the voting protocol by the involved parties. It is
essential that misbehaving parties are held accountable (e.g., via heavy fines or law suits)
to maintain the trust and reputation of a REV system [76].

Definition 10 Robustness. A REV system is considered robust if it is able to cope with
unpredictable changes in and influences on its operation without impacting its availability
or correct functioning [97].

Definition 11 Scalability. A REV system is considered scalable if an increased number
of voters does not imposed any restrictions on the system or incur any unsustainable
requirements on computational power or data storage.

Robustness and scalability are practical properties necessary for the fault-tolerant, highly-
available and safe operation of a REV system. Only if these properties are given can a
REV system be applied in practice for large scale votes.

Definition 12 Transparency. In a transparent REV systems, all processes are documented
and publicly available. Each stakeholder has clearly defined roles and responsibilities. This
also includes a security concept and protocols in case of an emergency or malfunctioning
of the system (e.g., attack, error) [35].

2.1.4 Trust Assumptions & Trade-Offs

The difficulty of achieving the previously mentioned properties depends on the trust as-
sumptions of the considered REV systems. If a trusted third party or stakeholder is
acceptable, it is less demanding to achieve the desired properties. In theory, the ultimate
goal is to have a REV system without any trust assumptions that is perfectly verifiable
while everlastingly protecting the voter’s privacy [67]. As likely assumed, is such a case
impossible to achieve as privacy and verifiability have inherently contradicting goals. For
example, it was shown [23] that UV and RF cannot simultaneously co-exist unless private
communication channels are available between the stakeholders which is an unreasonable
assumption. Or, that improving the level of BS, i.e., disguising the relationship between
the voter and its ballot, can actually lower the level of CR [77]. Therefore, the goal of REV
research and system design is to strive for the most promising trade-offs i.e., achieving
sufficient privacy levels while retaining as much verifiability as possible [67].

In practice, the application of the REV system determines the acceptable trust assump-
tions and the necessary strength of the properties. Depending on the application, it can
be viable to favour certain properties over others. For example, in case of national elec-
tions, the verifiability properties might be of greater importance than the RF property as
large scale vote-buying is highly unlikely to go unnoticed. On the other hand, in a public

2.2. DISTRIBUTED LEDGER TECHNOLOGY 7

company’s general assembly vote, the choices of major shareholders are usually publicly
known and can be inferred from the outcome of the vote. To ensure the vote’s outcome
is as intended, a major shareholder might be tempted to buy votes. In such a case, RF
can be more important than verifiability [23].

2.2 Distributed Ledger Technology

A distributed ledger (DL) can best be described as a public, distributed, append-only
database storing all transactions executed on a network. In more technical terms, a DL
is an immutable, backward-linked list formed by blocks of transactions. A block is a data
structure that bundles a group of transactions. Transactions are generic in nature and
allow the execution of arbitrary code (e.g., money transfer, ownership proof, etc.) i.e.,
allowing to mimic contractual relationships between parties. The DL forms an immutable
chain as each block links to the preceding one by storing its cryptographic hash next to the
transactions. Thereby, making it impossible to alter or remove agreed upon transactions
contained in preceding blocks. Also, storing the hash of the preceding block reinforces the
integrity as any change in a preceding block would change its hash and, therefore, change
the hash of all following blocks. A DL is operated as a peer-to-peer (P2P) network and
maintained by a set of peers following a consensus mechanism. This mechanism is a set
of mathematical rules responsible for validating and synchronizing state changes without
the need for a trusted authority. It allows all peers to agree on the integrity of any state
change initiated by a transaction [86, 105, 108].

2.2.1 Permission Models & Consensus Mechanisms

Different types of DLs exist for different application purposes. Generally, they can be
differentiated by their permission model as well as their consensus mechanism. In a per-
missionless setting, anyone is allowed to join the network as a an active (e.g., a validator)
or passive (read-only) participant at any point in time. There exists no fixed set of au-
thorities that govern the network and consensus is reached for example, by ”putting in
the work”. This refers to the commonly known Proof-of-Work (PoW) consensus mech-
anism that is based on participants attempting to solve a mathematical challenge and
proving to a verifier that a certain amount of work, i.e., computational power, has been
performed. Well-known examples of permissionless setups and PoW are Bitcoin [84] and
Ethereum [107]. On the other hand, in a permissioned setup, the set of authorities (and
sometimes participants) is fixed. This work is based on a variant of permissioned DLs,
namely public-permissioned DLs in which the set of authorities is fixed, reading is pos-
sible for anyone, new blocks are alternately produced in fixed time intervals and consen-
sus is reached by a majority vote among the authorities. This mechanism is known as
Proof-of-Authority (PoA) [5]. Examples of permissioned DLs are Hyperledger Fabric2,
Corda3 or Parity Substrate4. As this work focuses on a setting in which a set of known,

2https://www.hyperledger.org/projects/fabric
3https://www.corda.net
4https://www.parity.io/substrate

8 CHAPTER 2. BACKGROUND

semi-trusted authorities exist (e.g., municipalities, cantons, government), the choice of a
public-permissioned DL is evident.

2.2.2 DL as Public Bulletin Board

In Switzerland, it is required by law [32] for any REV system to provide verifiable evidence
of its executed processes if the system shall be used by the majority of the public. An
essential building block in achieving this verifiability and auditability requirement is the
public bulletin board (PBB). A PBB is a publicly available audit trail of all storage and
communication associated with a vote. Its storage is append-only to ensure the integrity.
It provides a single and consistent representation of its state independent of the viewer
and is backed by a distributed system to ensure reliability [67, 70]. Its main properties
are [68]; public readability, immutability, integrity and redundancy. An attempt at a
formal definition of the PBB is made in [60]. The authors propose an interlinked structure,
based on a hash chain and similar in functionality to a DL. Also, write access is controlled
via digital signature verification limited to a set of known public key addresses.

Given these requirements, public-permissioned DLs seem to be the perfect candidates for
PBBs. The distribution of trust, i.e., the ability to record and tally a vote, formalized
through the consensus mechanism and the absence of an always online trusted third-
party (TTP) are an advantage of DLs. By doing removing the TTP, a potential single
point of failure is eliminated. Furthermore, to increase the trust in the REV system,
authority roles could be assigned to other partially trusted organizations (e.g., NGOs,
vote observers, etc.) wanting to audit and safeguard the voting process [108]. On the
other hand, the public readability also provides additional challenges given the desired
privacy properties of REV systems. Since it is required that ballots are kept private
and that no one can know if and how someone voted, cryptographic techniques such as
encryption and shuffling ballots are required to ensure BS in public.

Chapter 3

Cryptography

The privacy and verifiability of Remote Electronic Voting (REV) systems is based on
various cryptographic algorithms. These algorithms are composed of different underlying
building blocks. This section introduces the most important building blocks required to
understand the algorithms and concepts used in this work.

3.1 Hash Functions

A hash function H is used to generate a fixed-sized output y, called fingerprint, hash, or
digest, from a variable size input x: H(x) = y. For a hash function H to be used in a
cryptographic application, it must fulfil the following requirements [87, 101]:

• Pre-Image Resistance (One-Way): Inverting the hash function is computationally
infeasible, which means that it must be impossible to find x, for a given y, such
that H(x) = y.

• Second Pre-Image Resistance: It must be impossible to find another input value x′,
where x′ 6= x but H(x′) = y and H(x) = y.

• Collision Resistance: Finding a pair of input values (x, z) such that h(x) = h(z)
must be impossible.

Hash functions must be efficient to compute for any given input and hard to invert. Also,
finding a collision must be impossible to guarantee that the output cannot be from a
different, potentially ”fake”, input. Given these properties, hash functions find a wide
range of applications in cryptography, such as in message integrity checks, digital sig-
natures, password storage or proof systems (e.g., as a random oracle to make proofs
non-interactive) [87].

9

10 CHAPTER 3. CRYPTOGRAPHY

3.2 Public Key Cryptography

Any public-key or asymmetric cryptography system is based on the intractability of a
mathematical problem (e.g., prime factorization of a large composite number, finding
the discrete logarithm). It involves two distinct keys (public/private key) compared to
symmetric cryptography. This is necessary since it must be impossible to infer the private
key from the public key and/or the decrypted data from the encrypted data. The public
key is used for encryption and digital signature verification, while the private key is
used for decrypting and generating digital signatures [87, 101]. Any public-key system
consists of the following components: a plaintext message m, an encryption algorithm E,
a public/private key pair (pk, sk), an encrypted message (ciphertext) c and a decryption
algorithm D [101]. Equation 3.1 illustrates the relation of the mentioned components.

m = D(c, sk) = D(E(m, pk), sk) (3.1)

In practice, public-key cryptography is well researched and standards are established.
Examples of commonly used public-key systems are RSA [93], Diffie-Hellmann Key Ex-
change [34] and ElGamal [37], described in Section 3.4.

3.3 Homomorphic Encryption

Homomorphic encryption is based on a structure-preserving mapping of two different
operations. It allows for one operation to be performed on ciphertext, resulting in the
same outcome as if the operation had been performed on plaintext. Thus, allowing for
confidential information (e.g., the content of a vote) to remain private while processing it
in public [6, 43, 67]. The mapping can be defined as follows:

E(m1, pk)⊗ E(m2, pk) = E(m1 ⊕m2, pk) (3.2)

As can be seen from equality (3.2), two ciphertexts can be combined into one without
using the private key. The operators ⊕ and ⊗ are arbitrary and depend on the underlying
cryptosystem. This property is the main concept behind REV systems based on homo-
morphic tallying and allows to compute the result of a vote (i.e., summing all encrypted
votes) without decrypting an individual ballot.

3.4 ElGamal Cryptosystem

The ElGamal cryptosystem is a homomorphic, probabilistic, public-key cryptosystem
based on the intractability of the discrete logarithm problem in the cyclic group G. The
cyclic group Gq with prime order q is defined over a finite field Zp which is defined over
positive integers modulo p, where p is an odd prime. The cryptographic operations are

3.4. ELGAMAL CRYPTOSYSTEM 11

performed in a subgroup Gq ⊂ Z∗p, a multiplicative cyclic group Gq defined over the finite
field Zp. Alternatively, the cyclic group G can also be defined over an elliptic curve that
is itself defined over a finite field [37].

3.4.1 Security

The security of the ElGamal cryptosystem is based on the mathematical hardness of find-
ing discrete logarithms in cyclic groups, which is known as the decisional Diffie-Hellmann
(DDH) assumption. The DDH assumptions is necessary to ensure that the ElGamal cryp-
tosystem is secure against chosen plaintext attacks (IND-CPA) [13]. The most common
group for which the DDH assumption is considered to hold is the subgroup of quadratic
residues modulo a safe prime: p = 2q + 1 [14].

Definition 13 (Decisional Diffie-Hellmann (DDH)) Given a multiplicative, cyclic group
Gq of prime order q, and with generator g, the DDH assumption states that for any triple
(a, b, c) ∈r Z∗q (chosen uniformly, independently and at random from Z∗q), no efficient
(polynomial time) algorithm can distinguish between gab and gc (i.e., gab “looks” just like
any other value in G) [14].

3.4.2 Key Generation, Encryption and Decryption

Key Generation. The public elements of the ElGamal crypto system are G, p, q and two
independent generators g and h, where g, h ∈ Gq \ 1. The private key sk is a random
value: sk ∈r Z∗q, where q = p−1

2
. The public key pk is defined as follows:

(sk, pk) = (sk, gsk mod p) (3.3)

Encryption. A plaintext message m can be encrypted using a random value r ∈r Z∗q.

E(m, pk) = c = (a, b) (3.4)

= (gr mod p, pkr ·m mod p)

Decryption. A ciphertext c = (a, b) is decrypted by computing the multiplicative inverse
of ask multiplied with b.

D(c, sk) = m = (ask)−1 · b mod p (3.5)

= (gr
sk

)−1 · pkr ·m mod p

= (gr
sk

)−1 · gskr ·m mod p

= (gr·sk)−1 · gr·sk ·m mod p

12 CHAPTER 3. CRYPTOGRAPHY

3.4.3 Message Encoding

Messages in the ElGamal cryptosystem must be encoded, i.e., mapped with a reversible
function to a group element, such that the DDH assumption holds [25, 36]. Otherwise,
the ElGamal cryptosystem is not secure against chosen plaintext attacks (IND-CPA). To
accomplish this, different encodings with their own advantages and disadvantages exist,
of which two are discussed in the following.

Variant 1: gm

Exponent ElGamal message encoding has been introduced by Cramer et al. [25]. The
idea is to encode any message m ∈ Zq as gm. The corresponding ciphertext is given by
E(m, pk) = c = (a, b) = (gr, pkr · gm). This type of encoding is used in Provotum 2.0 [72]
and 3.0 [66] as it has the additional property of making the ElGamal cryptosystem ad-
ditive, instead of multiplicative homomorphic. A downside of this encoding is that the
plaintext, resulting from the decryption, must be decoded by computing the discrete log-
arithm of gm (i.e., g? = gm). Generally, computing discrete logarithms is hard. It is
only possible for a restricted message space m ∈ 0, 1 where brute forcing or using the
baby-step-giant-step algorithm is possible [36].

The example below visualizes how two ElGamal ciphertexts E(m1) and E(m2) can be ho-
momorphically summed. The components are multiplied, i.e., its exponents are summed,
resulting in the same sum as if the plaintexts m1 and m2 had been summed.

E(m1 +m2, pk) = E(m1, pk) · E(m2, pk) = (gr1+r2 , pkr1+r2 · gm1+m2) (3.6)

m1 +m2 = decode(D(E(m1 +m2, pk), sk)) (3.7)

Variant 2: mq mod p ≡ 1

An alternative method is to ensure all messages are restricted to be quadratic residues
in a safe prime group G of order q. Using this approach, it is required to check that
the following equality: mq mod p ≡ 1 holds before a message is encrypted. Otherwise,
the message must not be encrypted [36]. This work makes use of the second variant as
each ballot needs to be decrypted and no additional decoding step is required after the
decryption. On the other hand, choosing the prior variant would be computationally
infeasible. A downside of this encoding is that the equality check needs to be performed
before encrypting, increasing the runtime due to the modulo exponentiation. Fortunately,
the increase is negligible in practice for a single operation.

3.5 Re-Encryption

Re-encryption is a technique that can be used in probabilistic encryption systems to
change the ciphertext without changing the respective plaintext. Since the ciphertext

3.6. MIXNETS 13

depends on an independent random value r1, its appearance can be altered by encrypting it
again using a different independent random value r2. The resulting ciphertext is equivalent
as if it only depended on a single independent random value r3. It is important to note
that both pk and g need to remain the same throughout all encryptions [67].

generic re-encryption

Er2(Er1(m, pk), pk) = Er3(m, pk) (3.8)

Re-encryption is used in REV systems to break the association between the voter and
her ballot since it only changes its appearance but not its content. The re-encrypted
ballot can no longer be associated with the voter while the content (i.e., the vote) re-
mains unchanged. In any probabilistic homomorphic encryption system, re-encryption is
supported by homomorphically adding an encryption of 0 (3.9) or by multiplying with an
encryption of 1 (3.10), depending on the type of message encoding, without changing the
plaintext [67].

by addition

Er1(m) = (gr1 , pkr1 · gm)

Er2(0) = (gr2 , pkr2 · g0)
Er1(m) · Er2(0) = (gr1 · gr2 , pkr1 · gm · pkr2 · g0) = (gr1+r2 , pkr1+r2 · gm) (3.9)

by multiplication

Er1(m) = (gr1 , pkr1 ·m)

Er2(1) = (gr2 , pkr2 · 1)

Er1(m) · Er2(1) = (gr1 · gr2 , pkr1 ·m · pkr2 · 1) = (gr1+r2 , pkr1+r2 ·m) (3.10)

3.6 Mixnets

A mix-net is a strategy of preserving the privacy of the voters by ensuring that the
ballots, i.e., the ciphertexts, cannot be associated with the voting choice. If a REV system
would simply decrypt the ballots once the voting period has ended, the system could not
guarantee ballot privacy. Anyone that can link a ciphertext to a voter, would be able to
link it to the corresponding plaintext. Instead, by using a mixnet to irreversibly shuffle
the encrypted ballots, the linking between the cipher- and plaintext can be prevented. A
mixnet changes the appearance and order of the ciphertexts such that its inputs cannot
be linked trivially to its outputs. Important hereby is, that the mixnet must maintain the
integrity of the ballots. It must not be possible that the mixnet adds or removes ballots
or changes the content of a ballot. Thus, a proof of a correct shuffle is required. This can
be done using both re-encryption mixnets or decryption mixnets [58, 67, 70, 98].

14 CHAPTER 3. CRYPTOGRAPHY

3.6.1 Decryption Mixnets

Decryption mixnets have been first introduced by Chaum [19]. A decryption mix works
by using several layers of encryption. For each authority (mixer), the vote is encrypted
with its public key. During every step of the mixnet, the ballots are stripped off a different
encryption layer resulting in a different shape and output. The results of the intermediate
steps are still ciphertexts and, therefore, do not reveal any information about the votes.
Only the sequential decryption of all encryptions can reveal the plaintexts and in turn the
result of the vote. The approach is similar to the technique used in anonymous routing
such as in a TOR1 network [58, 67, 70].

3.6.2 Re-Encryption Mixnets

Re-encryption mixnets have been first introduced by Park et al. [88]. They require a
probabilistic public key encryption system such as ElGamal [37] that allows to re-encrypt
a ciphertext (see Section 3.5). The process of a re-encryption mixnet can be compared
with the physical task of shaking a ballot box to shuffle the ballots and, therefore, making
it impossible to associate a ballot with a specific voter [52, 55]. More formally, a re-
encryption mixnet is formed by a series of cryptographic shuffles, each composed of a
secret permutation and a re-encryption function. The cryptographic shuffle re-encrypts
and permutes a group of ballots i.e., changes the ciphertext appearance and outputs
the result in a randomized order. To avoid recoverability, this step can be repeated
multiple times [58, 61, 67, 70]. The algorithms used in this work are based on the CHVote
specification [52]2.

GeneratePermutation

known: p, q, g

input: permutation size N

I = 〈1, ..., N〉
for i = 0, ..., N − 1 do

r ∈r [i,N − 1]

ji+1 = I[r]

I[r] = I[i]

output: ψ = (j1, ..., jN)

Figure 3.1: Pseudo-Code Permutation Algorithm

Definition 14 (Permutation) A list of messages M = (m1,m2, ...,mn) is considered per-
muted if the positions of all its entries are randomly reassigned M ′ = (m5,mn,m1, ...,m2)
while keeping the same number of elements. Also, none of the elements is allowed to

1https://www.torproject.org
2The CHVote specification is available online: https://eprint.iacr.org/2017/325.pdf. The im-

plemented algorithms 8.42 GenShuffle and all helper algorithms used within 8.42.

https://eprint.iacr.org/2017/325.pdf

3.6. MIXNETS 15

change. A permutation is defined as a mapping ψ : {1, ..., N} → {1, ..., N} and can be se-
lected at random from the set of all possible permutations using the Knuth (Fisher-Yates)
algorithm [52, 55]. A pseudo-code version of the algorithm is illustrated in Figure 3.1.

Definition 15 (Cryptographic Shuffle) A cryptographic shuffle transforms a list of cipher-
texts c = (c1, c2, ..., cn) into c′ = (c′n, c

′
2, ..., c

′
1) using permutation and re-encryption such

that c′j = re-encrypt(ci, pk),∀j = ψ(i) [52, 55]. A pseudo-code version of the algorithm
is found in Figure 3.2.

GenerateShuffle

known: p, q, g

inputs:

− encryptions c = (c1, ..., cN)

− public key pk

ψ = (j1, ..., jN) ∈r ΨN (see 3.1)

for i = 1, ..., N do

ji = ψ(i)

c′i = re-encrypt(cji , pk)

output: c′ = (c′1, ..., c
′
N)

Figure 3.2: Pseudo-Code Shuffle Algorithm

To recap, a multiplicative homomorphic encryption c = Er1(m, pk) can be re-encrypted
as c′ = re-encrypt(c, pk) = Er2(c, pk) = c·Er2(0, pk) as shown in Section 3.5. The output
c′ represents the same plaintexts (m1,m2, ...,mn) as c but their ciphertext representation
is different and in permuted order [52, 55]. The correctness of the cryptographic shuffle
needs to be proven for each re-encrypted message. This is called a proof of shuffle and is
explained in detail in Section 3.8.4.

3.6.3 Summary

In both variants (decryption & re-encryption mixnet), the outcome is privacy preserving
as an adversary cannot identify voters using their ballots. Nevertheless, re-encryption
mixnets have become the de-facto standard for REV systems leveraging mixnet techniques.
This is because mixnets in REV systems come into play once all ballots have been cast and
the voters’ signatures have been verified. A re-encryption mixnet is advantageous in this
use case as the voters only need to perform a single encryption while the shuffling process
can be repeated multiple times independently of the voters’ original encryptions [52, 58,
55, 61, 67, 70].

16 CHAPTER 3. CRYPTOGRAPHY

3.7 Multi-Party Computation

Multi-Party Computation (MPC) is a cryptographic technique with which a group of
participants can compute a shared function without revealing their private inputs [90].
In REV systems, the technique is used to distribute trust equally among all participants
avoiding single points of failure. For example, to avoid that a single entity is able to
decrypt individual ballots, a distributed key generation (DKG) scheme can be used.

3.7.1 Distributed Key Generation

A DKG protocol allows a set of participants to generate a collective secret with its shares
spread among the participants. In REV systems, such a protocol is used to generate the
vote’s public key. Each participant generates a (public/private) key pair locally and pub-
lishes their public key share. All public key shares are then combined into the common
public key. Only a collective effort can retrieve the private key, as the individual shares
are not publicly known, while any subset smaller than the number of participants can-
not [46, 51, 67, 71, 98]. The protocol used in this work is based on [25, 90] and requires a
probabilistic, public-key cryptosystem (e.g., ElGamal) in which all n participants present
during the key generation also need to be present during the decryption. In a practical
scenario, the participants of the protocol should therefore be a set of trustworthy parties
(e.g., the cantons).

Key Pair Generation. Each participant i ∈ [1, n] creates a (public/private) key pair
(pki, ski), as shown in equation 3.11, resulting in n key pairs. The private key shares
ski are kept secret, while the public key shares pki are published and combined into the
vote’s public key (3.12). The vote’s public key pk is then used by the voters to encrypt
their ballots. Since this process occurs offline and cannot be verified, its correct execution
needs to be proven similarly to the shuffle proof required as a part of the mixing process.
In this case, a proof of knowledge of a private key share ski that belongs to a public key
share pki is required which is explained in detail in Section 3.8.1.

(pki, ski) = (gri mod p, ri) (3.11)

pk =
n∏
i=1

pki mod p (3.12)

3.7.2 Cooperative Decryption

Similar to the DKG protocol, each participant i must generate a set of decryption shares
dij such that the ballots, encrypted with the vote’s public key, can be decrypted. It is
necessary that all and the same n participants which took part in the DKG protocol also

3.7. MULTI-PARTY COMPUTATION 17

take part in the decryption protocol. The decryption protocol is composed of three steps
which can be grouped into an offline (Step 1) and online part (Step 2 & 3).

Step 1 (Equation 3.13). Each participant i partially decrypts the ballots c, using its
private key ski, producing a set of decryption shares di. These shares do not reveal
anything about the plaintexts. Since accesses to the private key ski is required in this
step, the operation must occur offline and be accompanied by a proof (3.8.2) similar to
the one performed as part of the DKG protocol [52].

input ciphertexts: c =[c1, c2, ..., cj, ..., cm], cj = (a, b)

output partial decryptions: di =[d1, d2, ..., dj, ..., dm]

dj =askij mod p (3.13)

=grj ·ski mod p

Step 2 (Equation 3.14). The decryption shares of all participants are combined to re-
trieve the combined decryption shares [52]. This step can be performed online and, there-
fore, can be verified by anyone, thus not requiring an proof.

input partial decryptions: D =(dij) ∈ GN×M
q

output combined partial decryptions: d =[d1, d2, ..., dj, ..., dm]

dj =
N∏
i=1

dij mod p (3.14)

Step 3 (Equation 3.15). The combined decryption shares are used to retrieve the de-
crypted ballots [52]. Depending on the message encoding (3.4.3), the decrypted ballots
might still have to be decoded to reveal the plaintexts [52]. Again, this step can be
performed online and is therefore publicly verifiable for anyone.

inputs ciphertexts: c =[c1, c2, ..., cj, ..., cm], cj = (a, b)

combined partial decryptions: d =[d1, d2, ..., dj, ..., dm]

output plaintexts: m =[m1,m2, ...,mj, ...,mm]

mj =
bj
dj

mod p (3.15)

=pkrj ·mj · (grjsk)−1 mod p

18 CHAPTER 3. CRYPTOGRAPHY

3.8 Zero-Knowledge Proofs

Zero-Knowledge Proofs (ZKP) are a cryptographic technique that allows a prover P to
prove to a verifier V that it knows about a secret s without revealing anything about
s. More generally, a ZKP is used to prove some boolean statement over publicly and
privately known arguments, without revealing the private arguments. For example, in
REV systems, a ZKP is used to prove knowledge of a private key that belongs to a certain
public key to assert that the private key was in a given operation [67, 98].

Prover Verifier

commitment

challenge

response

Figure 3.3: A generic Σ protocol

Interactive ZKP. A common way to model ZKPs is to use a three-move interactive
protocol between the prover P and the verifier V . As visualized in Figure 3.3, P ini-
tially commits to an outcome based on its private knowledge, then V challenges P and
thus P needs to reveal a part of its commit to assert consistency with its claim. The
repeated execution of this commit-challenge-response scheme allows V to gain confidence
in the proof [67, 98]. The protocol is also commonly known as Σ-protocol, named after
Cramer [24], and can be defined as follows.

Definition 16 (Σ Protocol.) Σ-protocols must be (1) complete, (2) sound and (3) zero-
knowledge. (1) For a true statement, a honest prover P must always succeed in convincing
an honest verifier V . (2) For a false statement, a honest verifier V will only be convinced
with negligible probability, independent of the prover’s doing. (3) It must not be possible
for anyone to learn anything from the proof, apart for its correctness [24].

Non-Interactive ZKP (NIZKP). As interactive ZKPs require more than one commu-
nication step between P and V , which is time-consuming and costly, it can make their
application in REV systems infeasible. Fortunately, interactive ZKPs can be made non-
interactive using the Fiat-Shamir [42] transformation. The idea is to replace the inter-
actively obtained challenge from V by an unpredictable challenge generated by P . The
challenge is generated using a cryptographic hash function, serving as a local random
oracle [42]. Both the commitments as well as the public arguments or statement to be
proven need to be hashed, to avoid the pitfall of using a weak Fiat-Shamir transformation
(only hashing the commitments) which leads to unsound proofs in the case of a dishonest

3.8. ZERO-KNOWLEDGE PROOFS 19

prover [12]. The instantiations of the NIZKPs used in this work are introduced in the
next sections.

3.8.1 Key Generation Proof

To show knowledge of a private key sk ∈r Z∗q that belongs to a public key pk = gsk,
the Schnorr Proof [95] can be used. It is also known as pre-image proof and is a proof
of knowledge of a discrete logarithm of sk = logg(g

sk) [38]. It is generated and veri-
fied as shown in Figure 3.4, requiring the previously generated public/private key pair
(pk, sk) (Section 3.3) as input.

Prover Verifier

knows id, sk, pk, g, p, q knows id, pk, g, p, q

commitments

a ∈r Z∗q
b = ga mod p

challenge

c = hash(id, pk, b) mod q

d = a+ c · sk mod q

(c, d) re-compute

b =
gd

pkc
mod p

c′ = hash(id, pk, b) mod q

verify

c
!

= c′

gd
!

= b · pkc′ mod p

Figure 3.4: Key Generation Proof

3.8.2 Decryption Proof

To prove that a partial decryption of a ciphertext c = (a, b) is correct, the following needs
to be proven: d = aski , where pki = gski . The proof used in this work (Figure 3.5) is
inspired by the CHVote specification [52] and is a modified version of the Chaum-Pedersen
proof [22] such that a single proof can show the correct partial decryption for a batch of
ciphertexts. It is a proof of discrete logarithm equality of logg(g

r) = logh(h
r) and is similar

to the Schnorr Proof [95].

20 CHAPTER 3. CRYPTOGRAPHY

Prover Verifier

knows id, ski, pki, g, p, q knows id, pki, g, p, q

knows ci = (ai, bi) ∈ Z2
p, di ∈ Zp knows ci = (ai, bi) ∈ Z2

p, di ∈ Zp
inputs inputs

c = (c1, c2, ..., cN) c = (c1, c2, ..., cN)

d = (d1, d2, ..., dN) d = (d1, d2, ..., dN)

commitments

w ∈r Z∗q
t0 = gw mod p

ti ← awi mod p

t = (t0, t1, ..., tN)

challenge

c = hash(id, pki, c,d, t) mod q

s = w − c · ski mod q

(c, s) re-compute

t0 = pki
c · gs mod p

ti ← dci · asi mod p

t = (t0, t1, ..., tN)

c′ = hash(id, pki, c,d, t) mod q

verify

c
!

= c′

Figure 3.5: Decryption Proof

3.8.3 Re-Encryption Proof

A regular non-interactive ZKP (NIZKP) is transferable, meaning that the proof’s state-
ment can be verified by anyone. In the context of REV systems, this is not always
desireable. For example, using a regular NIZKP a voter would be able to prove to a vote
buyer how she voted by simply forwarding the proof. To mitigate this risk, a NIZKP can
be made non-transferable by adapting such that it only convinces a designated verifier. A
designated verifier proof claims a statement similar to: knowledge of V ’s private key OR
knowledge of the secret. And, since only the designated verifier V has knowledge of the
private key, is thus able to check if the claim is correct or not [67, 98].

In this work, a designated verifier proof is used by the randomizer to prove to a voter that
an encrypted ballot c′ is a valid re-encryption of the voter’s original encrypted ballot c.
The idea is to re-encrypt with the identity element, i.e., 0 (addition) and 1 (multipli-
cation), to change the appearance of the ciphertext but not the content of the ballot.
The re-encryption variants can be seen in (3.9) and (3.10). The proof protocol shown in
Figure 3.6 is inspired by Hirt et al. [65] and makes use of the Schnorr proof [95]. It has
been adapted for the use with non-encoded, multiplicative homomorphic encryptions (see

3.8. ZERO-KNOWLEDGE PROOFS 21

Section 3.4.3). The proof is a logical OR-combination of two parts. A proof of knowledge
of a discrete logarithm such that skvoter = logg(pkvoter) = logg(g

skvoter). And, a proof such

that c1
!

= c′ 	 c
!

= c′ ⊕ c−1 is satisfied, given c = E(m, r0) (the voter’s initial
encryption), c1 = E(1, r1) (an encryption of 1 using the re-encryption random r1) and
c′ = re-encrypt(c, r1) = c1 ⊕ c (the randomizer’s re-encryption of c). Referring back to
the statement to be proven, the secret is the random value used in the re-encryption r1.

Prover Verifier

knows pkv, g, p, q, r1, c1 knows skv, pkv, g, p, q, c1

c1 = E(1, r1) = (gr1 , pkr1v · 1) pkv = gskv

commitments

r2, h2, s2 ∈r Z∗q
c′1 = E(1, r2) = (gr2 , pkr2v · 1)

t2 = gs2 · pk−h2v mod p

challenge

h = hash(c1, c
′
1, t2) mod q

h1 = h− h2 mod q

c = h1 · r1 + r2 mod q

c, c′1, h1, h2, s2, t2 re-compute

h = hash(c1, c
′
1, t2) mod q

verify

h
!

= h1 + h2 mod q

E(1, c)
!

= h1 · c1 ⊕ c′1
gs2

!
= pkh2v · t2 mod p

Figure 3.6: Designated Verifier Re-Encryption Proof

3.8.4 Shuffle Proof

The type of shuffle proof used in this work has been first introduced by Furukawa and
Sako [45] and is based on permutation matrices. The exact implementation is a proof of a
correct shuffle [61, 104] and adapted from the CHVote specification [52]. In the following,
the necessary concepts are introduced to understand how the proof works and what it is
composed of. The algorithms3 implemented for the proof generation and verification can
be seen in Figures 3.7 and 3.8. The auxiliary algorithms referenced in both the generation
and verification are depicted in Figures 3.9, 3.10, 3.11 and 3.12.

3The CHVote specification is available online: https://eprint.iacr.org/2017/325.pdf. The al-
gorithms implemented are 8.45 GenShuffleProof and 8.46 VerifyShuffleProof, including all helpers men-
tioned in either one of the two.

https://eprint.iacr.org/2017/325.pdf

22 CHAPTER 3. CRYPTOGRAPHY

As briefly touch upon in Section 3.6.2, the correctness of a cryptographic shuffle, which
transforms a list of ciphertexts c = (c1, c2, ..., cn) into c′ = (c′n, c

′
2, ..., c

′
1) using permutation

and re-encryption such that c′j = re-encrypt(ci, r
′
i),∀j = ψ(i), needs to be proven for

each re-encryption. This can be done by proving knowledge of the permutation ψ and
the vector of random factors used for re-encryption r′ = (r′1, r

′
2, ..., r

′
n) [52, 55]. The proof

looks as follows:

πψ = NIZKP[(ψ,R′) : cj = shuffle(ci, r
′
i, ψ), ∀j = ψi(i)] (3.16)

The result is a triple (c, c′, πψ) containing the initial list of ciphertexts c, its shuffled
(i.e., re-encrypted and permuted) transformation c′ and the proof attesting the validity
of the shuffle. Unfortunately, standard pre-image proofs such as the Schnorr proof 3.8.1,
cannot be applied to the cryptographic shuffle as it is not homomorphic, which is a
requirement to make the proof non-interactive [55]. For such a proof to be applicable in
a REV system, it needs to be possible to make it non-interactive as performing multiple
interactions between the PBB and every validator is impractical. Therefore, an alternative
homomorphic version of the proof is required. This is an active area of research with many
different approaches and strategies being explored. One of the most widely explored
alternative proofs has been proposed by Wikström and Terelius [104]. It is the basis for
this work and composed of an online and offline part which are discussed in the following.

Definition 17 (Pedersen Commitment) A protocol that allows a prover P to commit to a
secret value m without revealing it or being able to change it later on: c = Commit(m, r) =
gmhr mod p. h and g are independent generators of Gq, the same subgroup of Z∗p (p =
2q+1) that the ElGamal encryption system uses. The commitment c can be publicly stored
without revealing any information about the secret value m. Once P reveals m and r, any
verifier V can check that c = Commit(m, r) = gmhr mod p.

In the first part (offline), the prover P computes a Pedersen commitment to a permuta-
tion matrix: c = Commit(ψ, r), where the value of the commitment is the permutation
function ψ [55, 104].

Definition 18 (Permutation Matrix) A permutation matrix Bψ = (bij)N×N fulfils the fol-

lowing two conditions: (1) the elements of each row must sum up to one:
∑N

j=1 bij = 1 and

(2) each row contains exactly one non-zero element:
∏N

i=1

∑N
j=1 bijxi =

∏N
i=1 xi. There-

fore, the permutation matrix is composed of rows with a single one while all other entries
are zeros [55].

In the second part (online), the prover P shows that the permutation matrix is used in
the cryptographic shuffle to transform c into c′ using the standard pre-image proof. Now,
one must show in zero-knowledge that the two conditions introduced in definition 18 are
satisfied for Bψ. Together, with the commitment from the offline part and the proof for
correct re-encryption, one has created a zero-knowledge proof for a cryptographic shuffle
without revealing any information about the permutation ψ nor the re-encryption random
values r′ [55, 104].

3.8. ZERO-KNOWLEDGE PROOFS 23

GenerateShuffleProof

known: p, q, g, h

inputs:

− encryptions e = (e1, ..., eN), ei = (ai, bi) = (gri , pkri ·m)

− shuffled encrpytions ẽ = (ẽ1, ..., ẽN)

− re-encryption randoms r̃ = (r̃1, ..., r̃N) ∈ ZNq
− permutation ψ = (j1, ..., jN) ∈ ΨN

− public key pk

− vote identifier idvote

h = GetIndependentGenerators(N, idvote),h = (h1, ..., hN), hi ∈ {Zp \ 1}
(c, r) = GeneratePermutationCommitments(ψ,h)

c = (c1, ..., cN), ci ∈ Zp, r = (r1, ..., rN), ri ∈ Zq
u = GetChallenges(N, e, ẽ, c, pk), u = (u1, ..., uN), ui ∈ Zq
ũ = (ũ1, ..., ũN), ũi ← uji

(ĉ, r̂) = GenerateCommitmentChain(ũ)

ĉ = (ĉ1, ..., ĉN), ĉi ∈ Zp, r̂ = (r̂1, ..., r̂N), r̂i ∈ Zq
R0 = 0, U0 = 1

for i = 1, ..., N do

ŵi, w̃i ∈r Zq
Ri = r̂i + ũi ·Ri−1 mod q,R′i = ŵi + w̃i ·Ri−1 mod q

Ui = ũi · Ui−1 mod q, U ′i = w̃i · Ui−1 mod q

t̂i = gR
′
i · hU ′

i mod q

w1, w2, w3, w4 ∈r Zq
t1 = gw1 mod p

t2 = gw2 mod p

t3 = gw3

N∏
i=1

hw̃i
i mod p

(t4,1, t4,2) = (pk−w4

N∏
i=1

b̃w̃i
i mod p, g−w4

N∏
i=1

ãw̃i
i mod p)

c = hash(e, ẽ, c, ĉ, pk, t1, t2, t3, t4,1, t4,2, (t̂i, ..., t̂N)) mod q

v = (v1, ..., vN), vN = 1, vi−1 ← ũi · vi mod q

r̄ =
N∑
i=1

ri mod q, r̂ =
N∑
i=1

r̂ · vi mod q, r =
N∑
i=1

ri · ui mod q, r̃ =
N∑
i=1

r̃i · ui mod q

s1 = w1 − c · r̄ mod q

s2 = w2 − c · r̂ mod q

s3 = w3 − c · r mod q

s4 = w4 − c · r̃ mod q

ŝ = (ŝ1, ..., ŝN), ŝi ← ŵi − c · r̂i mod q

s̃ = (s̃1, ..., s̃N), s̃i ← w̃i − c · ũi mod q

output: π = (c, s1, s2, s3, s4, ŝ, s̃, c, ĉ)

Figure 3.7: Shuffle Proof Generation

24 CHAPTER 3. CRYPTOGRAPHY

VerifyShuffleProof

known: p, q, g, h

inputs:

− shuffle proof π = (c, s1, s2, s3, s4, ŝ, s̃, c, ĉ)

− encryptions e = (e1, ..., eN), ei = (ai, bi) = (gri , pkri ·m)

− shuffled encrpytions ẽ = (ẽ1, ..., ẽN)

− public key pk

− vote identifier idvote

h = GetIndependentGenerators(N, idvote),h = (h1, ..., hN), hi ∈ {Zp \ 1}
u = GetChallenges(N, e, ẽ, c, pk), u = (u1, ..., uN), ui ∈ Zq
ĉ0 = h

c̄ =
N∏
i=1

ci ÷
N∏
i=1

hi mod p

u =

N∏
i=1

ui mod q

ĉ = ĉN ÷ hu mod p

c̃ =

N∏
i=1

cuii mod p

(ã, b̃) = (
N∏
i=1

auii mod p,
N∏
i=1

buii mod p)

t̂ = (t̂1, ..., t̂N), t̂i ← ĉci · gŝi · ĉ
s̃i
i−1 mod p

t1 = c̄c · gs1 mod p

t2 = ĉc · gs2 mod p

t3 = c̃c · gs3
N∏
i=1

hs̃ii mod p

(t4,1, t4,2) = (b̃c · pk−s4
N∏
i=1

b̃s̃ii mod p, ãc · g−s4
N∏
i=1

ãs̃ii mod p)

c′ = hash(e, ẽ, c, ĉ, pk, t1, t2, t3, t4,1, t4,2, (t̂i, ..., t̂N)) mod q

output: c ≡ c′

Figure 3.8: Shuffle Proof Verification

3.8. ZERO-KNOWLEDGE PROOFS 25

GetIndependentGenerators

known: p, q, g

inputs:

− number of independent generators n ∈ N
− vote identifier idvote

for i = 1, ..., N do

x = 0

repeat

x = x+ 1

hi = hash(idvote,“const”, i, x) mod p

hi = h2i mod p

until hi /∈ {0, 1}
output: h = (h1, ...hN), hi ∈ {Zp \ 1}

Figure 3.9: Algorithm to retrieve n independent generators for vote idvote.

GeneratePermutationCommitment

known: p, q, g

inputs:

− permutation ψ = (j1, ..., jN) ∈ ΨN

− Independent Generators h = (h1, ..., hN), hi ∈ {Zp \ 1}
for i = 1, ..., N do

rji ∈r Zq
cji = grji · hi mod p

r = (r1, ..., rN), ri ∈ Zq
c = (c1, ..., cN), ci ∈ Zp
output: (c, r)

Figure 3.10: Algorithm to generate permutation commitment for permutation ψ.

26 CHAPTER 3. CRYPTOGRAPHY

GetChallenges

known: p, q, g

inputs:

− number of independent generators n ∈ N
− encryptions e = (e1, ..., eN), ei = (ai, bi) = (gri , pkri ·m)

− shuffled encrpytions ẽ = (ẽ1, ..., ẽN)

− permutation commitments c = (c1, ..., cN), ci ∈ Zp
− public key pk

H = hash(e, ẽ, c, pk)

for i = 1, ..., N do

I = hash(i)

ui = hash(H, I) mod 2τ , τ = 128

output: u = (u1, ..., uN), ui ∈ Zq

Figure 3.11: Algorithm to generate n challenge values for a set of public input val-
ues e, ẽ, c, pk.

GenerateCommitmentChain

known: p, q, g, h

input: permuted public challenges ũ = (ũ1, ..., ũN), ũi ∈ Zq
R0 = 0, U0 = 1

for i = 1, ..., N do

r̂i ∈r Zq
Ri = r̂i + ũi ·Ri−1 mod q, Ui = ũi · Ui−1 mod q

ĉi = gRi · hUi mod p

r̂ = (r̂1, ..., r̂N), r̂i ∈ Zq
ĉ = (ĉ1, ..., ĉN), ĉi ∈ Zp
output: (ĉ, r̂)

Figure 3.12: Algorithm to generate commitment chain for the permuted public chal-
lenges ũ.

Chapter 4

Related Work

This section presents different research efforts made in the area of remote electronic voting
(REV). REV research has been initiated more than 40 years ago by David Chaum with
his work on untracable electronic messaging [19]. It is the first known proposal and based
on encrypted ballots and decryption mixes. Since then, a plethora of efforts have been
made in different directions summarized and discussed in various survey papers [2, 4, 18,
57, 67, 98]. In the following section, different areas of REV research are explored in more
detail and highlighted where they connect to the challenges of the current project.

4.1 Application-level Privacy

There exist different ways to achieve application-level privacy in REV systems. Ap-
proaches based on homomorphic encryption [25, 65] or blind signatures schemes [9, 44]
have been investigated and applied in other work. Another common alternative is through
the use of a Mixnet, a popular building block for verifiable and privacy preserving REV
systems. Different approaches and implementations are explored in the following section.

Mixnets. The concept of a mixnet has been first introduced by David Chaum in 1981 [19]
with his proposal on decryption mixes (DMN). DMNs are based on multiple encryptions of
a vote. Each voter encrypts their vote once with the public key of each mixer. In reversed
order, each mixer then decrypts the ballots with its private key and outputs them in
permuted order, with the last mixer revealing the plaintexts. The second common form
are re-encryption mixnets (RMN) first proposed by Park et al. [88] in 1993. RMNs are
based on cryptographic shuffles. Initially, each voter encrypts their vote with the vote’s
public key. Next, the mixers shuffle the ballots, i.e., they re-encrypt them using the same
public key and output them in permuted order. Often, accompanied by a non-interactive
zero-knowledge proof (NIZKP) attesting the correctness of the performed shuffle. Different
variations of both DMNs and RMNs exist. Nowadays, RMNs and the NIZKP of correct
shuffle are the defacto standards and very common in practical applications. They have
been applied in real elections in Estonia, Norway, Switzerland and other countries [57].

27

28 CHAPTER 4. RELATED WORK

Proof of Shuffle. Most RMNs require large and complex ZKPs to guarantee the re-
encryption and permutation of the ballots in a privacy-preserving way. There exist two
main types of shuffle proofs in literature: (1) variants based on Furukawa and Sako [45]
using a proof based on permutation matrices and (2) Neff [85] using a proof based on
polynomials that remain identical when permuting their roots. Variations based on Neff’s
proof are computationally more efficient but cannot be made non-interactive. Thus, not
perfectly suited for applications with large amounts of users. In practice, the most com-
monly used proof variants are all based on the first type [10, 104]. One of the most
well studied versions is the Proof of a Restricted Shuffle [104] and its implementation in
the Verificatum project. Its mixnet has been used in multiple international elections of
various sizes ranging from political party elections in Israel to national elections in Esto-
nia [106]. Even though more efficient proofs exist in literature [39, 40, 61], they are not
commonly used in practice due to a more complicated setup or requiring additional trust
assumptions. Additionally, it is worth mentioning the Open CHVote project [52, 55] with
its efforts on making Mixnet-based REV systems and the complex shuffle ZKP more ap-
proachable for non-cryptographers by providing extensive documentation and pseudo-code
algorithms where necessary. Also, efforts [58] have been made in the area of automated
machine-checking of all cryptographic properties in the design and implementation of the
shuffle ZKPs. Due to their complexity and the resulting likelihood for mistakes, integrity
checking is crucial as it is directly related to the validity and trustworthiness of a vote.

4.2 Network-level Privacy

An important promises of distributed ledger (DL) technologies is its privacy preserving
aspect. First generation protocols such as Bitcoin promised but effectively failed to pre-
serve the user’s privacy as transactions could be linked back to real world users. Various
attempts are made to address this problem such as anonymous broadcast or network level
message shuffling which are touch upon in the following paragraphs [63]. The main idea
is to mitigate the privacy attacks by decoupling the identity from a transactions.

Anonymous Communication. Zcash1 is a second generation solution that uses crypto-
graphic techniques such as ZKPs to avoid leaking sensitive information from transactions.
Nevertheless, the approach focuses only on the DL itself and recommends the use of an
anonymous communication protocol such as Tor2 to provide network level security, i.e.,
to prevent exposing IP-addresses [63]. Since such solutions are specifically designed for
low-latency applications (e.g., web-browsing, instant-messaging, etc.), they can at most
provide very basic levels of privacy (see Anonymity Trilemma [27]). Another problem with
Tor is that it is typically subject to government censorship. Therefore, it does not make
sense to support a tool which ships censorship circumventing tools for voting, an activity
that is not subject to censorship, as it might negatively affect the users [63]. Alternative
approaches are actively researched. An example is anonymous committed broadcast that
allows a set of clients to privately commit a message to a set of servers, which can then

1https://z.cash/technology/zksnarks/
2https://www.torproject.org

https://z.cash/technology/zksnarks/
https://www.torproject.org

4.3. EVERLASTING PRIVACY 29

simultaneously open all committed messages in random order, making it impossible to
create a link between the author and the message [1]. An optimal solution for anonymous
publishing in permissioned DLs must aim to be directly integrated into the consensus
mechanism.

Message Mixing. Another attempt trying to obscure the link between a sender and its
transaction is through the use of a centralized message mixing service. Unfortunately, the
centralization poses a new problem as it makes the mixing service the system’s single point
of failure. Also, the mixer could potentially alter transactions which are routed through it
or make use of the gained information [63]. Alternative approaches are explored, such as
the use of mixnets on the network-level as they are a widely accepted solution to counter
traffic analysis. The problem of existing designs is that they are too computationally
expensive at scale due to their need for sequential, just-in-time public-key operations.
The main goal of current research is to reduce the latency in such a way that mixnets can
even be used for instant messaging applications [21].

4.3 Everlasting Privacy

Both encryption as well as anonymisation techniques used to protect the voter’s privacy
are only as secure as the underlying cryptosystem. On top of that, encrypted votes are
usually published on the Internet and, therefore, an attacker can download them and wait
until the cryptosystem is broken (e.g., quantum computing) or computers are sufficiently
powerful to brute-force the encryption. To mitigate this threat, different approaches
towards everlasting privacy, i.e., the claim that privacy remains protected even if the
cryptosystem is broken, exist in literature. Some ideas related to mixnets are explored
below.

Mixing Commitments. In [28], one of the first publicly verifiable mixing schemes with
everlasting privacy is presented. The idea is based on mixing Pedersen commitments [89].
Instead of using the message itself, a commitment is used to encode the message. After-
wards, two synchronized mixnets are run in parallel, one private, the other one public.
The public mixnet operates on the commitment encoded messages and the private one
on the de-commitment values which are required to open (decode) the commitments.
The approach is a first step towards guaranteeing ever-lasting privacy for observers but
has a drawback that allows the initial mixnet to reconstruct the messages if the under-
lying cryptosystem is broken. Perfectly private audit trails (PPAT) and commitment
consistent encryption (CCE), introduced in [26], allow to preserve privacy even against
computationally unbounded adversaries. Research [49] has shown that the mixnets based
on the Terelius-Wikström shuffle ZKP [52, 104, 106] commonly used in practice are safe
for use with a PPAT-CCE encryption scheme. The idea of mixing PPAT-CCE encryptions
is similar to [28]. The publicly verifiable part only deals with commitments to encrypted
votes and not the votes themselves. The private part deals with the encrypted commit-
ment openings. The approach is advantageous as it uses the ElGamal encryption system

30 CHAPTER 4. RELATED WORK

which is significantly faster than the Pailier encryption system as it can be instantiated
on prime order elliptic curves.

4.4 Existing REV Systems

Many approaches and systems have been proposed throughout the years, few have been
practically implemented and even less are used in practice for state- or nationwide voting.
On top of that, REV is controversial in society. For some, it poses a huge security risk and
threatens a country’s democratic foundation whereas others consider it similar to Internet
banking [35]. Since REV implementation is an effort made by governmental actors and
not a privately pursued venture, the public may actively voice its concerns or even push for
a moratorium such as attempted in Switzerland in 20193. The following section presents
a selection of efforts made to develop REV systems in literature as well as in practice.

Practical Implementations. In 2005, Estonia was the first country to introduce a REV
system for all nationwide elections. The system makes use of a national wide electronic ID
system which enables eligible voters to participate [47]. Nowadays, it serves as one of the
most well-known examples of a country-scale REV system applied in the real world even
though its privacy and verifiability properties were far from optimal initially. Throughout
the years the system has been thoroughly analysed in the academic literature [62, 99]
which resulted in it being much securer and more verifiable today, than when it was first
introduced.

In contrast, Norway focused on a high degree of transparency and verifiability from the
very beginning of the project [48, 100]. Despite the system’s success, it was discontinued
in 2014 but mainly due to the lack of an increase in voter turnout than for any other
reason.

Switzerland already started in 2001 with initial tests on REV conducted by the vote
électronique consortium. The project called CHVote 1.0, was developed by the Canton
of Geneva [16] and was the first of its kind. Since then multiple projects have been
developed in parallel all trying to fulfil the privacy and verifiability requirements published
in the ordinance on electronic voting by the Federal Chancellery in 2013 [32] and in its
updated version of 2018 [33]. One of these projects is the second version of CHVote
focusing on achieving all necessary properties (e.g., universal verifiability) such that it
would be allowed for an application on national level. Despite the system’s continued
development and its successful tests, the canton of Geneva decided to halt all development
and discontinued all existing systems due to cost reasons in 2018 [17]. Another project is
the REV system developed by the Swiss Post and Scytl4, a Spanish company providing
electronic democracy services to many countries around the world. After a public intrusion
test in 2019, a critical security venerability in the project’s source code was discovered
that allowed the creation of falsified proofs that were still verifiable without a problem [56,

3https://e-voting-moratorium.ch
4https://www.scytl.com

https://e-voting-moratorium.ch
https://www.scytl.com

4.5. DISTRIBUTED LEDGERS AND REV 31

79]. Additionally, further problems in the documentation were found that concluded
in the researches being unable to confirm the system’s claimed individual verifiability
property [91]. For the aforementioned reasons, the Swiss Post discontinued the trials in
March 2019 and announced that they are working on a new, fully-verifiable REV system in
June 2019. Thus, at the current point in time Switzerland does still not have a functioning
nationwide REV system.

Research Efforts. One of the early, well-known REV systems published in literature
is the work by Cramer et al. [25] from 1997. The proposal is one of the first end-to-
end verifiable REV systems based on homomorphic encryption (HE). The main ideas are
to tally the result of a vote in an encrypted manner and to prevent the decryption of
individual ballots by distributing the private key access among multiple authorities. This
work is fundamental to the design of many REV systems, among others the Provotum
projects.

Another commonly known research project is Helios5 published by Ben Adida in 2008 [3].
It is one of the first practical systems implemented from research and used in real-world
elections. The system has been well studied through the years with various publications
criticizing security, privacy or verifiability aspects and proposing the necessary improve-
ments. Helios is based on client-side vote encryption and a RMN that shuffles the ballots
before decryption to guarantee ballot privacy. Helios provides CaI through a challenge-or-
cast scheme, RaC as voters can query their submitted ballots via their ID and UV since
anyone can verify the ZKP attesting the mixer’s correct execution of the shuffle.

4.5 Distributed Ledgers and REV

As shown in Section 2.2, DL technology offers many desirable proprieties for REV systems
and, is therefore frequently used as a public bulletin board (PBB) to store the voters’
ballots and to provide a way for public verifiability.

Research Efforts. Unfortunately, early work mostly failed to provide notable improve-
ments over centralized architectures or was unable to scale in a practical setting. The
system of [80] contains multiple single points of failure and relies on trust between a
voter and different third parties (e.g., voting authority, inspector). [59] proposes a system
based on a private Ethereum network but again requires a trusted third party (TTP) to
authenticate the voters, violating BS if the TTP should turn rogue. While the variant
of the Open Vote Network (OVN) proposed in [83] offers public verifiability, the system
is unfair (see definition of fairness 8) and fails to scale past 50 voters. One of the first
holistic approaches to DL-enabled REV systems is provided in [15]. The authors propose
various extensions to the popular Helios REV system. To improve the performance of the
mixnet the original shuffle proof is replaced with Neff’s verifiable secret shuffle [85]. The

5https://vote.heliosvoting.org/

https://vote.heliosvoting.org/

32 CHAPTER 4. RELATED WORK

architecture is adjusted to a multi authority setup using their own custom DL implemen-
tation, called Skipchain. Thereby, improving the integrity of the system and distributing
the trust among a set of nodes instead of relying on a single authority. Furthermore, the
global public/private key pair is replaced by a distributed key generation algorithm. An
extensive overview of the current state of research on PBBs and the different commercial
REV systems implementing a DL-based PBB is provided in this survey paper [102].

Provotum. The Provotum project is a proof-of-concept developed at the University of
Zurich. It defines a fully decentralized REV system by distributing trust among various
stakeholders and leveraging a public-permissioned DL as a PBB. The project started in
2018, with initial efforts made based on a centralized architecture using DL technology
only for storage [82]. The design relied on a central server that handled the encryption
of all votes and the generation of the necessary proofs. The result was a single point of
failure that would compromise the privacy and trust if the entity failed. Furthermore,
the system does not offer integrate verification of the generated proofs. In 2019, the
first fully decentralized version leveraging client-side encryption, homomorphic tallying
and a private Ethereum network was proposed. Smart contracts were used to provide
auditability and public verifiability. Similar to the OVN variant, the system failed to
scale past a few voters. Also, the system does not provide sufficient security levels due
to technical limitations, guarantee CaI nor is it receipt-free [72]. In late 2020, a third
and further refined version of the project was completed. The underlying DL technology
has been replaced with Substrate6 to remedy technical limitations imposing the inferior
security levels as well as to improve the scalability. Additionally, the new version ensures
receipt-freeness through the use of a ballot randomizer. Nevertheless, the system still does
not provide CaI, is limited to yes/no votes and runs into trouble if too many ballots are
cast at the same time [66].

6https://substrate.dev

https://substrate.dev

Chapter 5

System Design

This chapter provides a high-level overview of the system design, introduces the various
stakeholders and its roles and responsibilities, as well as the Provotum voting protocol
implemented in Chapter 6.

Sealers

Public Permissioned DL

Voting
Authority Voters

Randomizer

execute runtime &
validate blocks

generate config &
administrate vote

vote & verify

randomize

12

Figure 5.1: Provotum Stakeholders

5.1 Stakeholders

In the Provotum REV scheme various stakeholders exist, as illustrated in Figure 5.1,
each with different roles and responsibilities which are introduced in the following section.
Commonly, the scheme consists of a voting authority (VA), a randomizer, an identity
provider (IDP), N sealers and M voters and a public bulletin board (PBB). The current
design relies on N/N sealers being present during both the key generation as well as the
cooperative decryption.

33

34 CHAPTER 5. SYSTEM DESIGN

Node

A set of nodes forms the public-permissioned DL which acts as the REV vote’s PBB.
Using its PoA consensus mechanism, the validator nodes alternately author and validate
new blocks. The functionality of the voting protocol (e.g., creating a new vote, casting
a ballot, etc.) is directly implemented into the DL and can be interact with via an API.
Moreover, everything stored on the PBB is public and can be read by anyone, allowing
for public verification of any computation performed by the PBB. Validator nodes are
operated by the sealers, though other semi-trusted parties could be invited to help govern
the network.

Sealers

A sealer is an entity that runs an validator node and, thereby, participates in the PoA
consensus mechanism. Additionally, sealers participate in the distributed generation of
the vote’s public key as well as in decryption of the shuffled votes [72]. In theory, each
polling station could potentially act as a sealer. In practice, it is more likely that larger
municipalities or districts would run a group of sealers.

Voting Authority

The voting authority (VA) is the administrator of the vote. Its responsibility is to call the
DL’s API to create a vote, combine the public key shares to form the vote’s public key,
change the phase of a vote and to combine the decrypted shares to form the plaintext votes.
In theory, the role of the VA can be handled by governmental institutions on different
levels (e.g., the municipality, the canton, or the national government) [72]. In practice, it
is unlikely that each municipality will have the required infrastructure to securely run a
VA. It is more likely, that the VA would be run in a secure data center of a canton or the
national government.

Voters

Voters are people eligible to participate in the voting process. They interact directly with
the DL when wanting to cast their ballot, removing the need for a trusted third party
(which is common in other REV systems) and, thereby, removing a potential single point
of failure in the vote casting process [72].

Randomizer

The randomizer is an entity introduced as a part of Provotum 3.0 [66] to make the ballot
casting process receipt-free. The concept is based on the ideas proposed in Hirt’s paper
on achieving receipt-freeness in a homomorphic REV system [65]. The randomizer’s task

5.2. VOTING PROTOCOL 35

is to blind the voter’s ballot by re-encrypting it which uses a random value, only known to
the randomizer. Therefore, by integrating the randomizer, a malicious voter can no longer
prove to any third party how she voted since it is impossible for her to reproduce the cast
ballot published on the PBB. Furthermore, it is important to note that the randomizer
does not learn anything about the vote since re-encrypting a ballot is possible without
knowledge of the plaintext contained in the ballot [66].

5.2 Voting Protocol

The voting protocol of Provotum is largely based on the ideas of Cramer et al. [25] and
is roughly sketched as follows. The VA creates a vote and publishes the vote’s system
parameters. The N sealers jointly generate the vote’s public key which is used by the
voters to encrypt their votes. The ballots are then directly submitted to the PBB which
initiates the shuffling process once the voting period is finished. Finally, the sealers jointly
decrypted the shuffled votes revealing the plaintext results.

Pre-Voting Phase

Registration Pairing Key Generation

Voting Phase
Randomization

& Casting

Post-Voting Phase

Tallying Result

on chainoff chain on chain on chain on chain on chain

Ballot
Generation

on chain

Ballot Shuffling

on chain

Figure 5.2: Provotum’s Voting Protocol Phases

The voting protocol can be divided into three phases (Figure 5.2) and is similar to Provo-
tum 2.0 [72] and Provotum [66]. The key differences are the absence of the Ballot Shuffling
step in the two other protocols and the plaintext instead of HE-based tallying of the vote.

5.2.1 Identity Management

Due to the limited scope of this thesis and the extensiveness of identity management as
a field of research, it is not further investigated in this work. The indentity provisioning
scheme of Provotum 3.0 [66] can be used as a starting point for future research.

5.2.2 Pre-Voting Phase

In the pre-voting phase the DL network is jointly established by the authorities and the
PBB is setup, the VA creates a new vote for which the sealers generate a public key. The
phase consists of three main tasks: (1) registration, (2) pairing and (3) distributed key
generation.

The phase starts with the registration step, in which each sealer generates a public/private
key pair used for the identification of the sealer in the DL context. The public key is
transmitted over an authenticated channel or via physical means to the VA to ensure

36 CHAPTER 5. SYSTEM DESIGN

VA PBB

create vote (idvote, p, g, q)

Create Vote

publish(g, p, q)

store(idvote)

create question (idvote, idquestion, question)

Store Question

store(idquestion, question) for idvote

Figure 5.3: Pre-Voting Phase - Registration Step - Create Vote & Store Questions

the sealer cannot be impersonated by a man-in-the-middle adversary. Depending on
the application, one or more keys are required to allow to differentiate between block
production and block finalization. In the Pairing step, the VA generates the DL’s initial
configuration file, containing the sealer’s public keys depicting them as validators of the
network and the public key of the VA. Important to note is that the VA does not act as a
validator, i.e., it does not author blocks, only participate as a vote administrator. This is
to ensure that the VA is not an overly powerful network peer. Finally, the VA publishes
the configuration file and starts a DL node. The sealers retrieve the configuration via a
public API and start a DL node themselves, together establishing the network.

Key Generation

The last step of the phase is split into three parts. First, the VA creates the vote’s public
parameters p, g, q and sends them together with the vote creation transaction to the PBB.
The PBB validates the parameters, creates the vote and stores the associated questions
(Figure 5.3).

Sealers PBB

Generate Key Pair + ZKP

create key pair (pki, ski) (see 3.11)

proof generation (see 3.8.1)

idvote, pki,proof

Verify ZKP + Storage

proof verification (see 3.8.1)

store(pki) for idvote

Figure 5.4: Pre-Voting Phase - Key Generation Step - Key Pair Generation, Proof Gen-
eration & Verification, Storage of Public Key Share

5.2. VOTING PROTOCOL 37

Next, each sealer i ∈ N locally generates an ElGamal public/private key pair together
with the accompanying ZKP and sends the public key share and the proof to the PBB. The
PBB verifies the proof and if deemed valid, stores the public key share pki (Figure 5.4).
Finally, once all sealers have submitted their public key shares, the VA can trigger the
public key creation. The PBB combines all public key shares into the vote’s public key
pkvote which will be later used by the voters to encrypt their votes. The public key is
stored on the PBB and the vote is opened by advancing the state to the next phase
(Figure 5.5).

VA PBB

combine public key shares (idvote)

Combine + Publish

pk = combine(pki) (see 3.12)

publish(pk)

Figure 5.5: Pre-Voting Phase - Key Generation Step - Combine Public Key Shares to
Create Vote Public Key

5.2.3 Voting Phase

In the voting phase, the voters vote, i.e., answer the vote’s questions, by generating their
ballots, re-encrypting them using the randomizer and submitting them to the PBB. The
phase is split into two steps: (1) Ballot Generation and (2) Randomization & Casting
which is visualized in Figure 5.6.

Ballot Generation

In the first step, the ballot generation, the voters answer the vote’s questions and generate
a random ballot c = E(v, r, pk) for each of their answers using the vote’s public key pk
for encryption.

Ballot Randomization & Casting

In the next step, each voter sends their ballots ballots to the randomizer for anonymiza-
tion. The randomizer re-encrypts each ballot c′ = re-encrypt(c), signs it with his private
key and proves that the re-encryption contains the same vote v using a NIZKP. Finally,
in the last part of the randomization & casting step, the voter verifies the proof and if
deemed valid, submits the ballot directly to the PBB. Thus, avoiding any intermediary
and, therefore, eliminating any potential single point of failure in the vote casting process.
When a new ballot arrives at the PBB, the first step is to verify that the ballot is not
an exact copy of an already cast ballot to avoid replay attacks. As a second step, the

38 CHAPTER 5. SYSTEM DESIGN

Voter Randomizer PBB

Create Ballot

c = encrypt(c) (see 3.4)

c

Re-Encrypt + Generate ZKP

c′ = re-encrypt(c) (see 3.5)

sign(c′)

proof generation (see 3.8.3)

c′, proof

Verify ZKP + Cast Ballot

proof verification (see 3.8.3)

idvote, idquestion, c
′

Store Ballot

verify signature(c′)

store(c′) for (idvote, idquestion)

Figure 5.6: Voting Phase - Ballot Generation, Ballot Randomization & Casting Steps

signature of the randomizer is verified to ensure that the voter has effectively random-
ized the cast ballot. Without the signature verification, it would be impossible to tell
if a ballot has been randomized, i.e., re-encrypted, or not due to the ciphertexts being
indistinguishable. Finally, the PBB stores the ballot associated with its respective vote
and question identifier.

5.2.4 Post-Voting Phase

Once the voting period has ended, the VA closes the vote by advancing the state to the
next phase, the post-voting phase. From now on, voting is no longer possible and new
ballots are rejected by the PBB.

Ballot Shuffling

The next step, shown in Figure 5.7, is to shuffle the submitted ballots so that they can
no longer be linked to their creators. For this, the sealers retrieve a copy of the ballots
c from the PBB and initiate the process. The shuffling takes place outside of the DL
context since random values, which are not supposed to be leaked, are required in both
the re-encryption as well as the permutation. The downside of this is that the performed
shuffles are not publicly verifiable which is crucial to establish trust in the process and

5.2. VOTING PROTOCOL 39

the correct functioning of the REV system. To circumvent this problem and to allow for
public verifiability, the sealers prove correctness of the shuffle by generating a NIZKP that
proves knowledge of the random values as part of the shuffle.

Sealers PBB

c

Shuffle Ballots + ZKP

c′ = shuffle(c) (see 3.6.2)

proof generation (see 3.8.4)

idvote, idquestion,proof, c′

Verify ZKP + Storage

proof verification (see 3.8.4)

store(c′) for (idvote, idquestion)

Figure 5.7: Post-Voting Phase - Ballot Shuffling Step - Ballot Shuffling, Proof Genera-
tion/Verification and Storage

Finally, the proof is submitted together with the shuffled ballots c′. The PBB verifies
the proof and stores the shuffled ballots, if the proof is valid. The process is repeated
by a different sealer using the shuffled ballots c′ as input producing the next generation
of shuffled ballots c′′. The shuffling stops once the desired number of shuffles is reached.
This number can be specified in the initial configuration and varied from a vote to vote
basis. It is suggested to perform more than a single shuffle to avoid recoverability in the
case of a malicious sealer peer. In case of a large number of ballots, the ballots can be
split into batches such that multiple sealers can simultaneously shuffle a different batch
of the same generation of ballots.

Tallying

Once all ballots have been sufficiently shuffled, the VA can initiate the distributed de-
cryption of the vote. A visualization of this step is shown in Figure 5.8. For this, each
sealer i ∈ N partially decrypts the shuffled ballots c′′. This part occurs outside of the
DL context as it involves the sealers’ private key shares ski. To ensure that the partial
decryption di has been performed correctly, the sealers create a proof showing knowledge
of the private key share ski that belongs to the public key share pki, they published to
the PBB during the distributed key generation (5.2.2). The partial decryption di is sub-
mitted together with the proof to the PBB. After successful proof validation, the partial
decryption is stored.

It is important to note that in the current implementation all N sealers that participated
in the key generation must also participate in the distributed tallying. If any sealer (pur-
posely) refrains from submitting their partial decryption, the ballots cannot be decrypted.

40 CHAPTER 5. SYSTEM DESIGN

Sealers PBB

c′′

Partial Decryption + ZKP

di = partial decrypt(c′′) (see 3.13)

proof generation (see 3.8.2)

idvote, idquestion,di,proof

Verify ZKP + Storage

proof verification (see 3.8.2)

store(di) for (idvote, idquestion)

Figure 5.8: Post-Voting Phase - Tallying Step - Ballot Shuffling, Partial Decryption

Results

The last step of the phase is composed of the combination of the partial decryptions di,
the public decryption of the combined partial decryptions d and optionally, the decoding
of the resulting plaintext votes. The step, visualized in Figure 5.9, is initiated by the
VA triggering the combination of the partial decryptions di. The PBB ensures that all
sealers have submitted their partial decryptions and combines them ballot-wise. Next,
the combined partial decryptions d are decrypted using the remaining component ci2 of
the encrypted ballots c′′, revealing the result. Depending on the message encoding used,
the result needs to be decoded before the plaintext votes can be revealed.

VA PBB

tally(idvote, idquestion)

Combine + Decrypt

d = combine(di) (see 3.14)

v = decrypt(d) (see 3.15)

optionally, decode plaintexts v (see 3.4.3)

t = tally(filter(v))

store(t) for (idvote, idquestion)

Figure 5.9: Post-Voting Phase - Results Step - Combine Partial Decryptions, Decrypt
and Reveal Plaintexts

In the last step, the plaintext votes are filtered to ensure any invalid votes v or incorrect
submissions are not counted. Finally, the filtered set is tallied and for each unique entry
its count is denoted. Once the PBB has stored and published the final tally, the voting
protocol is completed.

Chapter 6

Implementation

Alongside this thesis, a prototype has been developed implementing the system architec-
ture proposed in Chapter 5. The prototype is structured into five individual packages
as shown in Figure 6.1. The interactions are highlighted in red and the dependencies in
blue. The source code for the individual packages is published in the provotum-mixnet

repository which is part of the Provotum GitHub organization1.

randomizer

node

crypto

VA

sealer

voter

Figure 6.1: Provotum Prototype Packages

6.1 Packages

The node package is the main component of the system. It implements the public bulletin
board (PBB) and the main parts of the voting protocol using Substrate2, a modular frame-
work developed by Parity Technologies3 that allows to create purpose-built distributed

1https://github.com/provotum
2https://substrate.dev
3https://www.parity.io

41

https://github.com/provotum
https://substrate.dev
https://www.parity.io

42 CHAPTER 6. IMPLEMENTATION

ledgers (DL). The node package is composed of various components, many provided by
the maintainers of Substrate, abstracting the complexity necessary for core functionalities
such as networking, communication and data storage. Thus, allowing the user to focus on
developing the runtime logic. The voting protocol and mixnet implementation are con-
tained in its own Substrate package, called pallet-mixnet. Its main entry point is shown
in Figure 6.2. The main idea behind this is to avoid tightly coupling the implementation
to rest of the runtime logic, such that the pallet could potentially be replaced (e.g., by
a homomorphic encryption pallet) or used in a different Substrate project. Substrate,
as well as all other packages of this prototype, are developed using Rust4, a modern,
low-level, type- and memory-safe language heavily focused on performance. To allow for
straightforward testing, simplified project exploration and with reproducibility in mind
all packages are containerized using Docker5. The existing images are available from the
Provotum GitHub organization. Additionally, a docker-compose6 script is provided that
allows to start a pre-configured test setup with the ease of a single command.

1 // Imports dependencies from Substrate

2 use frame_support::{decl_module, decl_event, decl_storage, decl_error};

3

4 // Imports functionality defined in this pallet

5 use crate::helpers::phase::set_phase;

6

7 // Imports functionality defined in the crypto library

8 use crypto::proofs::shuffle::ShuffleProof;

9

10 // Runtime Configuration: Defines the traits that this configuration

depends on and that this pallet needs to implement↪→

11 pub trait Trait: pallet_timestamp::Trait + frame_system::Trait +

frame_system::offchain::CreateSignedTransaction<Call<Self>> { ... }↪→

12

13 // Storage Declaration. Defines the storage type (simple value or

key/value map) and the access level (private/public)↪→

14 decl_storage! { ... }

15

16 // Event Definition. Defines the different events including their

contained values and/or messages↪→

17 decl_event! { ... }

18

19 // Error Definition. Defines the different errors that can occur

20 decl_error! { ... }

21

22 // Extrinsics (API Definition). Defines the publicly callable functions

that can interact with the runtime and read/modify the storage. Also,

it defines the offchain functionality

↪→

↪→

23 decl_module! { ... }

Figure 6.2: node/pallets/mixnet/src/lib.rs: the main entry point of the mixnet
pallet.

Another important package of this prototype is the crypto package. It implements the
algorithms and zero-knowledge proofs (ZKP) required by the voting protocol. The com-

4https://www.rust-lang.org
5https://www.docker.com
6https://docs.docker.com/compose

https://www.rust-lang.org
https://www.docker.com
https://docs.docker.com/compose

6.1. PACKAGES 43

ponent is packaged as a library such that it can be included in the node package and used
by any other package (e.g., randomizer, VA, sealer, voter) wanting to make used of its
functionality. It abstracts away the complexity of the algorithms and proofs implemen-
tation by exposing a public API that can be interacted with. A user does not need to
know about or understand implementation details to be able to use the library. Also, by
extracting the functionality to a separate package, it was possible to test it extensively in
isolation. For a Rust package, called crate, to be used with Substrate, it must be com-
piled for the Web Assembly7 target wasm32-unknown-unknown and be no-std compatible
which means that it cannot make use of the standard library (e.g., no I/O operations, no
dynamically sized values such as strings or collections). The package has been specifically
designed for this use case. Nevertheless, it can also be used in a std compatible and if
compiled accordingly using the respective feature flag, additional features such as random
number generation are available.

The third independent package is the randomizer. It is a simple web-based service that
implements the ballot re-encryption and designated verifier ZKP generation using the
algorithms provided in the crypto package. The component is dockerized stateless service
that can be scaled according to the needs of the application.

provotum-cli 1.0

Moritz Eck <moritz.eck@gmail.com>

The Provotum CLI to impersonate voters, the voting-authority and sealers

USAGE:

provotum-cli <SUBCOMMAND>

FLAGS:

-h, --help Prints help information

-V, --version Prints version information

SUBCOMMANDS:

help Prints this message or the help of the given subcommand(s)

sealer A subcommand for controlling the Sealer

va A subcommand for controlling the Voting Authority

voter A subcommand for controlling the Voter

Figure 6.3: The default message shown by the provotum-cli. For each component, a
different subcommand provides the built-in operations.

The remaining components of the prototype are the VA, the sealer and the voter which
are test clients developed to simulate different vote setups and scenarios. Each component
personifies a stakeholder, as the names already suggest. The components are bundled
inside the client package into a single command line interface called provotum-cli.
The default message of the provotum-cli can be seen in Figure 6.3. The client uses
the functionality provided by the crypto library, the Rust Substrate client substrate-

subxt8 to interact with the node package and surf9, a Rust HTTP client, to interact
with the randomizer.

7https://webassembly.org
8https://github.com/paritytech/substrate-subxt
9https://github.com/http-rs/surf

https://webassembly.org
https://github.com/paritytech/substrate-subxt
https://github.com/http-rs/surf

44 CHAPTER 6. IMPLEMENTATION

6.2 Documentation

All packages develop as part of this prototype are extensively documented with the goal
to make it as simple as possible for other developers to understand what currently exists,
how it works and to get an idea of how it can be extended. In the following, two examples
(Figure 6.4 and Figure 6.5) from the crypto package are shown for illustration purposes.

1 /// Returns an ElGamal Encryption of a message. The message

encoded such that additive homomorphic operations are

possible i.e. g^m_1 * g^m_2 = g^(m_1 + m_2)

↪→

↪→

2 /// - (a, b) = (g^r, pk.h^r * g^m)

3 ///

4 /// ## Arguments

5 ///

6 /// * `m` - The message (BigUint)

7 /// * `r` - The random number used to encrypt_encode the

vote↪→

8 /// * `pk` - The public key used to encrypt_encode the vote

9 pub fn encrypt_encode(m: &BigUint, r: &BigUint, pk:

&PublicKey) -> Cipher { ... }↪→

Figure 6.4: The figure shows the function header and documentation for encrypt_encode
which encodes and encrypts a message/vote such that it is possible to perform additive
homomorphic operations on the ciphertext. The code is found in the following file: cryp-
to/src/encryption.rs

Whenever an implementation is based on existing work, it is referenced accordingly. For
example, the implementation of the shuffle proof and its dependent functionality is inspired
by Haenni et al. [52] and their work on the CHVote Specification10. Figure 6.5 shows
some functionality that exists in a similar manner (i.e., not vector-based) in the CHVote
specification and has been adapted for the use in this work.

6.3 Technical Limitations

Due to the limited scope of this thesis and the extensiveness of identity management
as a field of research, the prototype implementation does not take eligibility verification
and voter identity management into consideration. During the ballot casting, the voter’s
identity is not verified. Hence, a voter can cast multiple ballots. This can be easily fixed,
as the necessary pointers are provided in the source code. Additionally, the public/pri-
vate key pairs of the authorities as well as the randomizer are directly integrated into the
configuration of the prototype. In a real-world setup, the key pairs would have to be gen-
erated in a secure (potentially air gaped) environment before each vote and inserted from
the outside once the DL network is running. Two different use cases are pre-configured.
A dev/testing setup with a single authority able to perform all operations and a more
realistic setup, the local configuration composed of a voting authority (Alice) and two

10https://eprint.iacr.org/2017/325.pdf

https://eprint.iacr.org/2017/325.pdf

6.3. TECHNICAL LIMITATIONS 45

1 /// Similar to GetVotes Algorithm 8.53 (CHVoteSpec 3.2)

2 ///

3 /// Computes the decrypted plaintext vote m by deducting the combined

partial decryptions decrypted_a = a^sk = (g^r)^sk) = g^(sk*r) from

the left-hand side b of the encryption e = (a, b) = (g^r, pk^r * m).

↪→

↪→

4 ///

5 /// b = pk^r * m = (g^sk)^r * m = g^(sk*r) * m

6 /// m = b / g^(sk*r) = b * (g^(sk*r))^(-1)

7 /// m = b * inverse_mod(g^(sk*r)) mod p

8 /// Returns plaintext vote: m | encoded(m)

9 ///

10 /// ## Arguments

11 ///

12 /// * `b` - The component b of an ElGamal Encryption (a: BigUint, b:

BigUint)↪→

13 /// * `decrypted_a` - The decrypted component a of an ElGamal Encryption

14 /// * `p` - The group modulus p (BigUint)

15 pub fn partial_decrypt_b(b: &BigUint, decrypted_a: &BigUint, p: &BigUint)

-> BigUint {↪→

16 let s_1 = decrypted_a.invmod(p).expect("cannot compute

mod_inverse!");↪→

17

18 // b = m * pk^r -> m = b * ((g^sk)^r)^-1

19 b.modmul(&s_1, p)

20 }

Figure 6.5: The figure shows the function documentation and implementation for par-

tial_decrypt_b which decrypts the component b of an ElGamal encryption e = (a,b)
given a partially decrypted e. The code is found in the following file: crypto/src/en-

cryption.rs

sealers (Bob and Charlie). These technical shortcomings have been addressed in Sec-
tion 8.2 providing starting points for further research and future theses.

46 CHAPTER 6. IMPLEMENTATION

Chapter 7

Discussion and Evaluation

In this chapter, the proposed voting protocol and system architecture are evaluated re-
garding privacy, verifiability, scalability as well as different practical properties. The
evaluation is separated into four different parts. In the first two sections, an analysis of
the privacy and verifiablity properties is performed. Next, the achieved practical proper-
ties are investigated. In the last section, the prototype is evaluated in terms of scalability
and real-world scenario applicability.

7.1 Privacy

The following section evaluates and discusses the privacy properties in relation to the
proposed voting protocol. In Table 7.1 an overview of how the privacy properties of the
Provotum REV system evolved across projects is presented. All projects apart from the
second major version of Provotum provide ballot secrecy (BS) and receipt-freeness (RF).

BS E-BS RF CR
Provotum 2.0 [72] 3 7 7 7

Provotum 3.0 (HE) [66] 3 7 3 7

Provotum 3.0 (Mixnet) 3 7 3 7

Table 7.1: Visualization of the privacy properties across all three Provotum projects.

7.1.1 Ballot Secrecy

In the proposed voting protocol, ballot secrecy is guaranteed as the ballots stored on the
public bulletin board (PBB) in the REV system are encrypted using the public key. No
single entity is able to decrypt individual ballots as the public key pk has been jointly
generated by the sealers using their shares pki (see Section 3.7.1). Even if a majority
of sealers were to turn rogue and collude on decrypting the ballots, it would remain
impossible as long as a single sealer remains truthful. Also, it is important to note that

47

48 CHAPTER 7. DISCUSSION AND EVALUATION

the randomizer does not learn anything about a vote, as it simply computes an encryption
of zero which is homomorphically added to the ballot, making it indistinguishable.

Since the security of the voting protocol is based on the security of the ElGamal cryptosys-
tem and, therefore, on the DDH assumption 13, everlasting privacy cannot be guaranteed.
It is possible that at some point in the future, the DDH assumption will no longer hold
due to the availability of a sufficiently powerful quantum computer. Thus, leading to far
more wide ranging problems than just the insecurity of this voting protocol as all systems
based on public-key cryptography will no longer be secure. At the end of 2020, between
50 and 100 qubits were the best publicly known results of existing quantum computers [7].
In comparison, the current assumptions are that to factor an ElGamal private key of 2048
bit size anything between twice the number, i.e., 4096 qubits, and a billion qubits would
be required [92].

7.1.2 Receipt-Freeness

To show that the proposed voting protocol is receipt-free, two important aspects are
considered. One, no information about the vote is leaked. As the voter encrypts the vote
using a random value r1 and the randomizer re-encrypts the voter’s ballot using another
random value r2, it is impossible to reproduce the result as neither one of the two knows
both random values. Also, if the voter attempted to prove to a vote buyer that she cast
her vote in a specific way, it would be impossible for her to do so as the randomizer always
uses a different random value r′2 for a different randomization. Only if the randomizer
and the voter were to collude, together they would be to prove to a vote buyer that the
voter cast a certain ballot. The second aspect to consider is that the NIZKP used by the
randomizer to prove to the voter that the randomized ballot is a valid re-encryption, is a
designated-verifier proof. This is important as the proof is only of use to the voter and
cannot be transferred to a third-party. Thus, unable to convince a vote buyer.

Depending on the thread model and risk assessment a different kind of randomizer can
be employed. In any case, an unauthenticated, untappable channel between the voter
and randomizer is required. In high coercion environments, a randomizer based on a
hardware token, as known from Internet Banking, could be used whereas in other scenarios
it might be feasible to deploy a web service. The later version is used in the prototype’s
implementation.

7.1.3 Coercion-Resistance

Although the protocol achieves BS and RF, it is not coercion resistant (CR). A voter can
be forced to give up her voter credentials or to abstain, if a coercer is physically present at
the same location. Also, the coercer can force a voter to vote in a specific way and ensure
the vote casting by observing the process in person. Other countries with established
REV systems (e.g., Estonia), circumvent this problem by allowing voters to cast their
ballots multiple times, each submission overriding the previous one, and to override their
electronically submitted ballots in person on the voting day [99]. This allows a coerced

7.2. VERIFIABILITY 49

voter to invalidate the previously forced ballot. Unfortunately, the Swiss law [29] explicitly
forbids the repeated ballot casting i.e., each eligible voter is only allowed to cast their
ballot once. Thus, making it impossible to guarantee CR in a REV setting in Switzerland
without simultaneously providing a physical voting alternative.

7.2 Verifiability

The following section evaluates and discusses the verifiability properties in relation to the
proposed voting protocol. In Table 7.2 an overview of how the verifiability properties of
the Provotum REV system evolved across projects is presented. All projects starting from
the second major version of Provotum provide individual (IV) and universal verifiability
(UV) as well as the properties recorded-as-cast (RaC) and counted-as-recorded (CaR).

IV UV E2E-V CaI RaC CaR
Provotum 2.0 [72] 3 3 7 7 3 3

Provotum 3.0 (HE) [66] 3 3 7 7 3 3

Provotum 3.0 (Mixnet) 3 3 7 7 3 3

Table 7.2: Visualization of the verifiability properties across all three Provotum projects.

7.2.1 Cast-as-Intended Verifiability

In the proposed voting protocol, CaI verifiability is not guaranteed for the layperson as
she does not have a way to audit the content of a ballot. In the current design, the REV
system encrypts the vote, sends the ballot to the randomizer for re-encryption, verifies the
returned NIZKP and publishes both to the PBB. To audit a ballot stored on the PBB, a
voter needs to record the random value used during the initial encryption to recompute
the pre-randomization ballot. This process is complex and requires an understanding of
the cryptographic primitives used which is an infeasible assumption to make in a system
designed for the masses. The fact that REV systems allow voting from uncontrolled
and insecure devices reinforces the need for a more user-friendly audit possibility. The
shortcoming has been addressed in Section 8.2 providing a starting point for future theses
and is already being addressed by a master thesis running in parallel to this work.

7.2.2 Individual & Recorded-as-Cast Verifiability

After casting the randomized ballot and the re-encryption NIZKP the PBB returns a
transaction hash confirming its inclusion. As soon as all distributed ledger (DL) network
peers have agreed to include the block which contains the voter’s transaction hash, the
voter can verify that its submitted ballot has been included by checking the transaction
log or querying the storage. By comparing the ballot from the PBB with the ballot stored
on the voter’s device, the voter can verify that the ballot has been recorded as cast. This
also fulfils the requirements defined for IV (5).

50 CHAPTER 7. DISCUSSION AND EVALUATION

7.2.3 Counted-as-Recorded

The usage of a DL as a PBB allows anyone to verify the correctness of the vote’s result. All
computations and proofs are stored by the PBB and once consensus is reached among the
DL network peers publicly available for verification. Proof verification and computations
part of automated PBB functionalities (e.g., combining public key or decrypted shares)
can be recomputed manually or using a verification software. A verifier would immediately
notice any manipulation attempts as, for example, replacing a ballot during the shuffling
process would stand out since the accompanying proof would fail during the verification.
In the following more examples are given.

Invalid Ballots. Should a ballot be invalid, as the vote contained is empty or garbage,
would this be recognized after the decryption and before the tallying of the plaintexts.
All invalid votes can then simply be discarded and excluded from the result. As long as
this is communicated by the voting authority when publishing the results, the process and
results remain verifiable.

Order of Ballots. The order of the ballots and the decrypted shares in the respective
ZKPs is inherently given as the PBB verifies the proofs by recomputing all necessary
values in the same order as the input values are stored. Therefore, the proof verification
will always fail should a sealer use ballots or decrypted shares in a different order in the
proof generation than the PBB will use during verification.

7.2.4 Summary

For a REV system to claim to be E2E verifiable, it must fulfil all of the previously
mentioned properties: CaI, RaC, CaR. Since the voting protocol in its current design does
not achieve CaI for the layman and the masses, E2E verifiability cannot be guaranteed.
On the other hand, universal verifiability (UV) is ensured as both RaC and CaR are given.

7.3 Practical Properties

The following section evaluates and discusses the properties relevant for a practical de-
ployment of the proposed voting protocol. In Table 7.3 an overview of how the practical
properties of the Provotum REV system evolved across projects is presented. All projects
starting from the second major version of Provotum provide fairness and transparency for
basic yes/no votes.

7.3. PRACTICAL PROPERTIES 51

Fairness Accountability Robustness Transparency 1+ Yes/No Elections
Provotum 2.0 [72] 3 7 7 3 7 3 7

Provotum 3.0 (HE) [66] 3 7 3 3 3 3 7

Provotum 3.0 (Mixnet) 3 7 3 3 3 3 3

Table 7.3: Visualization of the practical properties across all three Provotum projects.

7.3.1 Fairness

Fairness, as defined in Definition 8, is guaranteed in the voting protocol through the
distributed key generation process and ensured as long as at least a single sealer remains
honest. Thus, it remains impossible to decrypt the ballots prematurely. Only once the
voting period has ended are the sealers officially tasked with shuffling and tallying the
vote.

7.3.2 Accountability

In the proposed protocol design, misbehaving parties can be identified. A sealer no longer
taking part in the DL consensus mechanism would not go unnoticed as well as if it tried
to alter ballots during a shuffle or not submitted its decrypted shares for a particular vote
and question.

Due to the fact that n/n sealers taking part in the distributed key generation need to
take part in the distributed tallying, a malicious sealer can only be identified but not
excluded from the process without aborting the vote. It is essential for future designs
that misbehaving parties can be excluded without affecting the outcome of a vote. The
shortcoming has been addressed in Section 8.2 providing a starting point for future theses.

7.3.3 Robustness

As the proposed REV system makes use of a DL as PBB, robustness as defined in Defi-
nition 10, is inherently provided. The DL is operated as a P2P network with each peer
storing the complete state itself, avoiding the loss of state information due to a single
point of failure. Additionally, the network is maintained and state changes are agreed
upon using a majority vote among the authorities. Even if some network participants
t < N

2
were to go offline or fail to take part in the block authoring and validation process,

the REV system would continue to function normally.

7.3.4 Votes and Elections

Up until Provotum 3.0 only simple binary votes were supported. By replacing the HE-
based tallying component of the Provotum REV system with a Mixnet-based approach,
it removed the restrictions on votes being either zero or one. This allows for limited votes

52 CHAPTER 7. DISCUSSION AND EVALUATION

where voters select k out of N candidates or multi-way elections where voters select a
single candidate out of N possibilities.

In some countries, such as Switzerland, write-ins, i.e., votes containing a handwritten
name of a candidate, are allowed during the voting process as part of suggesting additional
candidates. This is currently not implemented in the prototype but technically possible.
The CHVote specification [52] provides a good starting point for further research.

7.4 Scalability

For a REV system to be applicable in practice, it not only needs to achieve the posed
security, privacy and verifiability requirements but also scale with the number of users. To
show that the proposed voting protocol and prototype implementation can be used in a
real world vote, we first provide a theoretical runtime analysis by counting the of modular
exponentiations (modExp) and comparing them with the previous projects. In the second
part, we provide a quantitative performance evaluation using different benchmarks.

7.4.1 Theoretical Runtime Performance

The performance of cryptographic algorithms is often compared in terms of modExp as
those are the most computationally intensive operations when using sufficiently large (i.e.,
2048 bits and more) key sizes for security reasons [53, 54]. In Table 7.4, the computational
cost of casting a single ballot in Provotum 2.0 and 3.0 are put into comparison with this
work. While Provotum 2.0 required 17 modExp per ballot, Provotum 3.0 required an
additional 26 modExp due to the additional operations necessary to guarantee RF in a
HE-based REV system, totalling in 43 modExp per ballot. This work only requires an
additional 8 modExp over Provotum 2.0 and results in a reduction of 18 modExp when
compared to Provotum 3.0. There are different optimizations and changes explained in
the following resulting in the reduced computational overhead.

Provotum 2.0 Provotum 3.0 This Work
Step Voter DL Voter DL Randomizer Voter DL Randomizer Sealer

Ballot Encryption 3 3 2
Ballot Validity ZKP Generation 6 6
Re-Encryption ZKP Generation 2 2
Re-Encryption ZKP Verification 2 2
Ballot Validity ZKP Randomization 6 16
Ballot Validity ZKP Verification 8 8
Ballot Shuffling 2
Shuffle ZKP Generation 8
Shuffle ZKP Verification 9
Total (Entity) 9 8 17 8 18 4 9 2 10
Total 17 43 25

Table 7.4: Comparison of cryptographic operations across the existing Provotum projects
in terms of modExp.

7.4. SCALABILITY 53

Ballot Validity ZKP. Compared to HE-based REV systems, in a Mixnet-based ap-
proach all ballots are decrypted before the tallying step and, therefore, their validity
can be checked. This removes the requirement for the ballot validity proof, i.e., the zero-
knowledge membership proof showing that the vote contained in the ballot is part of a set
of allowed votes (v ∈ 0, 1). In terms of runtime performance, this reduces the number of
modExp required by 14 respectively 36 compared to Provotum 2.0 and 3.0. Additionally,
by removing the ballot validity ZKP as used in Provotum 3.0, the voting protocol no
longer relies on a weak Fiat-Shamir transformation and, therefore, the assumption that
both the voter and the randomizer remain honest. The weak Fiat-Shamir transformation
is flawed as it allows a malicious prover to generate a proof that verifies correctly even if
the asserted value does not lie in the set of allowed votes [12].

Ballot Shuffling. To render the connection between a voter and its votes unrecoverable
even though the ballots are decrypted before the tallying, the ballot shuffling is required.
This process is composed of offline shuffling, offline proof generation and online proof
verification by the PBB. This process does not exist in the previous Provotum projects and
occurs an additional computation overhead. The shuffling operation requires 2 modExp per
ballot while the proof generation requires a constant 5 modExp and an additional 8 modExp

per ballot. The online proof verification requires a constant 11 modExp and an additional
9 modExp per ballot. Since shuffling only makes sense with more than a couple of ballots
and due to the constant parts of the proofs, one could argue that the larger the shuffle
size the better. The assumption is further investigated in the quantitative evaluation.

7.4.2 Benchmark Results

Theoretical runtime estimations are useful to identify the magnitude of algorithmic perfor-
mances but do not take real world overhead and implementation differences into account.
To estimate the practical scalability of the prototype REV system, we benchmark the
performance of the algorithms in a real-world scenario using 1’000’000 ballots as the tar-
get size of the vote. The benchmarks are performed on a Ubuntu 20.04 server using a
12-core AMD Ryzen 3900X CPU, base clock of 3.8GHz, and 64GB RAM. The results
were established by running each algorithm 10 times. In the following, the benchmarks
are group according to the vote phase they belong to.

Pre-Voting Phase

The pre-voting phase, composed of pairing, distributed key generation and vote setup,
does not contain any operation that needs to scale past a few number of participants.
Thus, no benchmarks have been performed for this phase.

Voting Phase

In the voting phase, the ballot randomization as well as the vote casting need to scale.
Both are benchmarked and the results are discussed in the following. On the other hand,

54 CHAPTER 7. DISCUSSION AND EVALUATION

the ballot generation does not need to scale as each voter performs this operation on
its device. But since the vote encoding strategy impacts the decryption performance, a
benchmark of the encoding strategies has been performed.

Vote Encoding. As the vote encoding used in this work (introduced in Section 3.4.3) is
different compared to the previous projects, the two strategies are benchmarked against
each other. In Table 7.5, the performance differences are visualized. In this work, the
encryption is about 10x more time-consuming as for each vote before encrypting it the
quadratic residue check is performed. Since this operation only occurs once per ballot
and on the voter’s devices, the performance degradation is negligible. On the other hand,
the performance of the decryption is constant and between 2x and 50x more efficient,
depending on the message input space, as the result of the decryption does not have
to be decoded to reveal the plaintext. In the former prototype implementations, the
encoded result had to be be brute forced to retrieve the corresponding plaintext. But as
only a single ciphertext, i.e., the homomorphically summed result, had to be decrypted
and decoded this was feasible. If we were to apply the same encoding strategy in this
work, where (1) votes are not restricted to zero and one and (2) each ballots needs to
be decrypted before the result can be tallied, the approach would not scale past a few
thousand ballots depending on the size of the vote space.

Encryption
Decryption

m ∈ [0, 10] m ∈ [0, 100] m ∈ [0, 1000]
Encoding 1: gm (3.4.3) 0.66 ms 4.21 ms 17.09 ms 144.93 ms
Encoding 2: mq mod p ≡ 1 (3.4.3) 4.37 ms 2.87 ms

Table 7.5: The performance difference of the two message encoding strategies (see Sec-
tion 3.4.3) for p of size 2048 bits and q = p−1

2
.

Randomizer. Since re-encrypting a ballot as well as generating a designated verifier ZKP
are stateless operations, they are no performance bottleneck even if the operations itself
were not efficient. Additional load can simply be handled by scaling up more randomizer
services.

Ballot Casting. Finally, the performance of the ballot casting is relevant as it is crucial
for the number of incoming ballots the DL network can handle at a time. The time
required to process a ballot is only 0.018 ms as no processing apart from the ballot
duplication check and the randomizer’s signature verification is required. Thus, compared
to the previous prototype implementations, this work is not limited by the ballot casting
throughput. The second factor that needs to be considered is the number of transactions
a DL node can handle per time interval. The ballot casting is benchmarked for the default
block time of 6 seconds. The performance of the network, composed of two sealers and a
voting authority, was able to handle ≈ 2100 transactions per block. This equates to 350
transactions per second or 1.25 million per hour.

7.4. SCALABILITY 55

Post-Voting Phase

In the post-voting phase, the shuffle ZKP verification and the partial decryption ZKP
verification by the PBB need to scale as the shuffling, tallying and publishing of the
results should not take longer than in a regular/postal voting scenario. Therefore, both
operations are benchmarked and the results are discussed in the following. Additionally,
the performance of the ballot shuffling in comparison to the chosen group modulus p is
investigated to highlight the impact on performance of increasing the security level.

Batch Size

Ti
m

e
(s

)

0.001

0.1

10

1000

100000

10 100 1,000 10,000 100,000

256bit 512bit 1024bit 2048bit 3072bit

Figure 7.1: Ballot shuffling performance evaluation for different sizes of p (group modulus)
and, therefore, different security levels. The figure shows the duration in seconds plotted
against various batch sizes, i.e., the number of votes in an operation. Both axis apply a
logarithmic scale. Thus, a 45-degree slope represents linear growth.

Shuffle (Crypto Library). In Figure 7.1, the performance of the ballot shuffling oper-
ation, as implemented in the crypto package, is visualized for the different sizes of the
group modulus p. It is clearly visible that an increase in group modulus p leads to a
much more significant increase in runtime. For example, decreasing the size of p from
2048bit to 256bit, would allow for a performance increase of ≈ 150 times depending on
the batch size. On the other hand, increasing p from 2048bit to 3072bit results in an
increased runtime of ≈ 3.15 times. An option to allow decreasing the group modulus
size while keeping or increasing the level of security is by performing all operations in a
group G∗q defined over an elliptic curve (EC). The performance gains are most likely less
than proposed above as EC operations are computationally more expensive. Nevertheless,
the performance improvements are still going to be significant enough to justify the effort.
This idea has been addressed as a starting point for future work in Section 8.2.

56 CHAPTER 7. DISCUSSION AND EVALUATION

ZKP Verification. The biggest bottleneck of this REV system are computationally ex-
pensive operations, such as ZKP verifications, that need to be performed by the PBB.
As the authorities alternately produce new blocks in fixed time intervals and do not pool
their resources, the DL can be perceived as a single unit of computing. The performance
of the PBB in the current state depends on the underlying hardware of the authority re-
sponsible for authoring the current block. Therefore, the performance of the shuffle ZKP
verification and partial decryption ZKP verification is further analysed.

Batch Size

Ti
m

e
(s

)

0.1

1.0

10.0

100.0

1,000.0

10,000.0

10 100 1,000 10,000 100,000

shuffling proof generation proof verification

Figure 7.2: Mixnet performance evaluation for p of size 2048 bits. The figure shows the
duration in seconds plotted against various batch sizes, i.e., the number of votes in an
operation. Both axis apply a logarithmic scale. Thus, a 45-degree slope represents linear
growth.

Shuffle Proof. In Figure 7.2, the performance of the ballot shuffling, shuffle ZKP gen-
eration and verification are visualized for a single Substrate node. The runtime of the
shuffling operation is comparable with the result of the crypto package benchmark for
p = 2048 (see Figure 7.1). Additionally, shuffling as well as the shuffle proof generation
are inherently parallelisable as these operations are performed offline. The work can be
distributed across all sealers and an increase in ballots can be offset by an increase in
sealers. Therefore, the performance of the shuffle proof verification is the only potential
bottleneck as it is performed on the PBB by the DL network participant authoring the
current block. In the current setup, this operation takes ≈ 22.3 ms per ballot which
equates to 6.2 hours of shuffle ZKP verification for 1, 000, 000 ballots. As of Substrate 3.0,
runtime worker threads1 have been added which allow a Substrate node to process mu-
tually exclusive transactions, that do not alter the storage, in parallel. This is currently

1https://github.com/paritytech/substrate/releases/tag/v3.0.0

https://github.com/paritytech/substrate/releases/tag/v3.0.0

7.4. SCALABILITY 57

not implemented in the prototype but has been addressed as a starting point for future
work in Section 8.2.

Batch Size

Ti
m

e
(s

)

0.001

0.01

0.1

1

10

100

1000

10 100 1,000 10,000 100,000

partial decryption (PBB) partial decryption (Sealer) proof generation proof verification

Figure 7.3: Partial decryption performance evaluation for p of size 2048 bits. The figure
shows the duration in seconds plotted against various batch sizes, i.e., the number of votes
in an operation. Both axis apply a logarithmic scale. Thus, a 45-degree slope represents
linear growth.

Partial Decryption Proof. In Figure 7.3, the performance of the the partial decryption
(Sealer), the ZKP proof generation and verification as well as the partial decryption
(PBB) are visualized for a single Substrate node. Similar to the ballot shuffling, the
partial decryption (Sealer) and proof generation are performed offline and are therefore
parallelisable. Thus, the proof verification and partial decryption (PBB) are the key
operations, potentially posing a bottleneck, performed on the PBB by the DL network
participant authoring the current block. In the current setup, the proof verification takes
≈ 4.8 ms per ballot which equates to 1.3 hours for 1 million ballots. Even though this
does not directly pose a performance bottleneck, runtime worker threads could again be
leverage to parallelize the proof verification. The performance of the partial decryption,
performed on the PBB, does not pose a bottleneck as it only takes ≈ 0.6 ms per ballot
which equates to 0.18 hours for 1 million ballots.

58 CHAPTER 7. DISCUSSION AND EVALUATION

Chapter 8

Conclusion and Future Work

The last chapter of this work summarizes its achievements, draws the necessary and
relevant conclusions and provides an outlook on what future research could focus on.

8.1 Conclusion

This work’s main goal was to tackle the limited applicability of the existing Provotum
projects to elections and to reduce the current ballot complexity to achieve nationwide
scalability. For this, the possibilities of a mixnet-based remote electronic voting (REV)
system were investigated. Additionally, due to its inherent integrity guarantee a dis-
tributed ledger (DL) was to be leveraged as public bulletin board (PBB) to ensure re-
liability, accountability and robustness on top of the commonly expected privacy and
verifiability properties. The justification for evaluating mixnets in a REV setting is as
they are advantageous over systems leveraging homomorphic encryption (HE) because
they allow for multi-way elections and write-in candidates. Also, the computationally
expensive zero-knowledge proof between the voter and the PBB ensuring ballot integrity
is no longer necessary. On top of that, the remaining computationally heavy operations,
such as ballot shuffling, are shifted from the voter to the voting infrastructure.

This work contributes a documented and fully functioning prototype implementation of
the presented voting protocol. It extends prior work [66, 72] by enabling multi-way elec-
tions instead of only supporting yes/no votes, while retaining all privacy and verifiability
properties. The prototype has been thoroughly evaluated and proven to scale sufficiently
such that votes and elections up to one million ballots can be handled securely and effi-
ciently. Finally, the development focused on ensuring extendablity, reusablity and ease of
use of the prototype. Thus, pre-built Docker images and scripts to setup and demonstrate
the capabilities with a single command are provided as well as a command line interface
simplifying the interaction with the prototype and allowing to impersonate different stake-
holders is available.

59

60 CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Future Work

The following section provides starting points for future work. It outlines different areas
of the REV system as well as the voting protocol in which improvements are necessary or
desired. The areas range from usability over technicalities to identity management.

8.2.1 Cast-as-Intended (CaI) Verifiability

The current protocol design does not support CaI verifiability for the layperson. A voter
is required to have the cryptographic skills to audit the created ballot. Right now, the
voter must understand how the ElGamal crypto system works and how an encryption
is computed. This is infeasible in practice and requires a more user-friendly alternative.
Thus, future work should investigate how CaI verifiability can be made suitable for the
masses. Existing approaches make use of devices similar to the ones common in Internet
banking applications. It would be interesting to explore smartphone based approaches as
these devices are nowadays commonly available and already used as a replacement for the
dedicated Internet banking devices.

8.2.2 k/n Distributed Key Generation

The current distributed key generation (DKG) algorithm requires a threshold of t ≤ n,
where t = n, authorities to be present both during the key generation as well as the
cooperative decryption (CD). DKG and CD vastly improve the robustness and fairness
of a REV system by distributing the trust across multiple nodes in the network and by
making early decryption impossible. Nevertheless, the t = n threshold bears its risks.
It is no longer possible to tally a vote should a sealer loose access to its private key
share or turn rogue and not contribute its partial decryptions. To mitigate this risk,
alternative options such as Pedersen’s DKG [90] not requiring all participants to be present
at all times should be explored. Pedersen’s DKG is based on every participant running
simultaneously a Feldman’s verifiable secret sharing (FVSS) [41] scheme as a dealer and,
therefore, avoiding a single point of failure by only having a single dealer. FVSS is a
widely known extension of Shamir’s secret sharing [96] that allows to divide a secret value
s across a set of participants t by splitting it into multiple parts. The scheme is based
on the idea that the polynomial P is computed over Z∗q and the secret s is defined as
s = P (0). Next, a set of points P (0) = s, P (1), P (2), ..., P (t − 1) is distributed privately
among the participants privately. The polynomial P is chosen to be of degree d = t − 1
such that t participants, t < n (e.g., n = 10, t = 7, d = 6), can recover it using polynomial
interpolation. Thus, recover the secret s = P (0).

8.2.3 Technical Improvements

Elliptic Curve Cryptography. In order to improve the performance of the REV system
while keeping the same level of security, an approach using elliptic curve cryptography

8.2. FUTURE WORK 61

could be investigated. For example, a 256-bit elliptic curve (EC) public key cryptosystem
provides roughly the same security as a 3248-bit ElGamal public key. The security of the
ElGamal crypto system as defined in 3.4 is based on the difficulty of solving the discrete
logarithm problem in the multiplicative, cyclic group G∗q. The group is defined over the
finite field Zp, of positive integers modulo p, where p = 2q+1 and p and q are odd primes.
Alternatively, the group G∗q could instead be defined over an EC which itself is defined over
the finite field Zp. In this alternative setting, the security is based on a similar problem of
finding the discrete logarithm of a random EC point, instead of an integer. Due to the fact
that efficiently computing a point multiplication is possible but finding the multiplicand
provided a start- and end-point is mathematically intractable, the system is secure.

Substrate Runtime Worker Threads. The performance of a Substrate node is currently
limited by the performance of a single core of its underlying hardware as all transactions
are verified sequentially. This poses a problem for computationally expensive operations
on the PBB such as shuffle- and partial decryption ZKP verification. To improve this per-
formance, the recently introduced runtime worker threads1 in Substrate could be leverage.
This addition allows a Substrate node to parallelize the verification and processing of all
mutually exclusive transactions, that do not alter the storage. To realize a performance
improvement while adhering to the restrictions, the shuffle- and partial decryption ZKP
transactions need to be restructured such that the proof verification can be performed in
parallel while keeping the storage modification, i.e., storing the shuffled ballots, sequential.

Mathematical Operations. Additionally, the performance of the underlying numeric li-
brary used to implement the mathematical operations has an impact on the performance
of the actual algorithms [54]. The literature [53] proposes different techniques to speed up
the process of shuffling ballots, generating and verifying shuffle ZKPs. Most of them are
related to improving the speed of the computationally expensive modExp operations by im-
proving the underlying algorithms for product and fixed-base exponentiation. Before such
ideas are explored in future work, the numeric library used in this work, num-bigint2,
should be benchmarked and compared with other libraries known for high performance
such as the GNU Multiple Precision Arithmetic Library3 and its extension for modular ex-
ponentiation4. If deemed necessary and no other higher performing library already exists,
ideas as proposed in literature could be explored to further improve the performance.

8.2.4 Identity Management

Apart from the inherently contradicting goals of privacy and verifiability, a third crucial
property, the eligibility verification, exists that has not been investigated at all due to
the limited time frame and scope of this work. Both previous Provotum projects [66, 72]
have made attempts at improving the identity management situation. Nevertheless, the

1https://github.com/paritytech/substrate/releases/tag/v3.0.0
2https://crates.io/crates/num-bigint
3https://gmplib.org
4https://github.com/verificatum/verificatum-gmpmee

https://github.com/paritytech/substrate/releases/tag/v3.0.0
https://crates.io/crates/num-bigint
https://gmplib.org
https://github.com/verificatum/verificatum-gmpmee

62 CHAPTER 8. CONCLUSION AND FUTURE WORK

identity provider always remained a trusted third-party and responsibilities were simply
shifted between different authorities. The problem itself is challenging and also somewhat
contradicting in nature as its task is to uniquely identify potential voters without nega-
tively affecting ballot secrecy while simultaneously ensuring that it is impossible for the
identity provider to manipulate the result itself. One way or another, there is definitely
further research and work required in this area.

Bibliography

[1] I. Abraham, B. Pinkas, and A. Yanai, “Blinder: Mpc based scalable and robust
anonymous committed broadcast,” Cryptology ePrint Archive, Report 2020/248,
2020, https://eprint.iacr.org/2020/248.

[2] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic en-
cryption schemes: Theory and implementation,” ACM Computing Surveys, vol. 51,
no. 4, pp. 1–35, 2018.

[3] B. Adida, “Helios: Web-based open-audit voting.” in USENIX security symposium,
vol. 17, 2008, pp. 335–348.

[4] S. T. Ali and J. Murray, “An overview of end-to-end verifiable voting systems,”
CoRR, vol. abs/1605.08554, 2016.

[5] S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V. Sas-
sone, “PBFT vs proof-of-authority: Applying the CAP theorem to permissioned
blockchain,” in ITASEC, ser. CEUR Workshop Proceedings, vol. 2058. CEUR-
WS.org, 2018.

[6] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter, and
M. Strand, “A guide to fully homomorphic encryption,” IACR Cryptology ePrint
Archive, vol. 2015, p. 1192, 2015.

[7] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum supremacy using a pro-
grammable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510,
2019.

[8] U. N. G. Assembly, “Universal declaration of human rights,” UN General Assembly,
vol. 302, no. 2, 1948.

[9] A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safani-Naini, A practical electronic vot-
ing protocol using threshold schemes. University of Wollongong. Department of
Computing Science, 1994.

[10] S. Bayer and J. Groth, “Efficient zero-knowledge argument for correctness of a shuf-
fle,” in Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer, 2012, pp. 263–280.

63

https://eprint.iacr.org/2020/248

64 BIBLIOGRAPHY

[11] J. Benaloh and D. Tuinstral, “Receipt-free secret-ballot elections (Extended ab-
stract),” Proceedings of the Annual ACM Symposium on Theory of Computing, vol.
Part F1295, pp. 544–553, 1994.

[12] D. Bernhard, O. Pereira, and B. Warinschi, “How not to prove yourself: Pitfalls
of the fiat-shamir heuristic and applications to helios,” in International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
2012, pp. 626–643.

[13] D. Bernhard and B. Warinschi, “Cryptographic voting — a gentle introduction,” in
Foundations of Security Analysis and Design VII. Springer, 2013, pp. 167–211.

[14] D. Boneh, “The decision diffie-hellman problem,” in International Algorithmic Num-
ber Theory Symposium. Springer, 1998, pp. 48–63.

[15] A. Caforio, L. Gasser, and P. Jovanovic, “A decentralized and distributed
e-voting scheme based on verifiable cryptographic shuffles,” 2017. [On-
line]. Available: https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/
report-2017-2-andreacaforio-evoting.pdf

[16] Canton of Geneva. E-Voting System: CHVote 1.0. [Online]. Available:
https://republique-et-canton-de-geneve.github.io/chvote-1-0/index-en.html

[17] ——. E-Voting System: CHVote 2.0. [Online]. Available: https://chvote2.gitlab.io/
state

[18] B. Carter, K. Leidal, D. Neal, and Z. Neely, “Survey of Fully Verifiable Voting
Cryptoschemes,” no. May, pp. 1–12, 2016.

[19] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”
Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[20] ——, “Elections with unconditionally-secret ballots and disruption equivalent to
breaking RSA,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 330 LNCS,
pp. 177–182, 1988.

[21] D. Chaum, D. Das, F. Javani, A. Kate, A. Krasnova, J. De Ruiter, and A. T.
Sherman, “cmix: Mixing with minimal real-time asymmetric cryptographic opera-
tions,” in International Conference on Applied Cryptography and Network Security.
Springer, 2017, pp. 557–578.

[22] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in CRYPTO, ser.
Lecture Notes in Computer Science. Springer, 1992, vol. 740, pp. 89–105.

[23] B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traoré, “On
Some Incompatible Properties of Voting Schemes,” in Lecture Notes in Computer
Science, 2010, vol. 6000 LNCS, pp. 191–199.

[24] R. Cramer, “Modular design of secure yet practical cryptographic protocols,” Ph.D.
dissertation, 1996.

https://www.epfl.ch/labs/dedis/wp- content/ uploads/2020/01/report-2017-2-andrea caforio-evoting.pdf
https://www.epfl.ch/labs/dedis/wp- content/ uploads/2020/01/report-2017-2-andrea caforio-evoting.pdf
https://republique-et-canton-de-geneve.github.io/chvote-1-0/index-en.html
https://chvote2.gitlab.io/state
https://chvote2.gitlab.io/state

BIBLIOGRAPHY 65

[25] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally efficient
multi-authority election scheme,” European Transactions on Telecommunications,
vol. 8, no. 5, pp. 481–490, 1997.

[26] E. Cuvelier, O. Pereira, and T. Peters, “Election verifiability or ballot privacy: Do
we need to choose?” Cryptology ePrint Archive, Report 2013/216, 2013, https:
//eprint.iacr.org/2013/216.

[27] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency - choose two,” in 2018 IEEE Sym-
posium on Security and Privacy (SP), 2018, pp. 108–126.

[28] D. Demirel and J. van de Graaf, “A publicly-veriable mix-net with everlasting
privacy towards observers,” Cryptology ePrint Archive, Report 2012/420, 2012,
https://eprint.iacr.org/2012/420.

[29] Der Schweizerische Bundesrat, “Verordnung über die politischen Rechte (VPR)
(vom 24. Mai 1978 (Stand 1. Juli 2019)),” 1978. [Online]. Available:
https://www.admin.ch/opc/de/classified-compilation/19780105/index.html

[30] Die Bundesversammlung der schweizerische Eidgenossenschaft, “Die Bun-
desverfassung der Schweizerischen Eidgenossenschaft (vom 18. April 1999
(Stand am 23. September 2018)),” 2018. [Online]. Available: https:
//www.admin.ch/opc/de/classified-compilation/19995395/201809230000/101.pdf

[31] Die Bundesversammlung der schweizerischen Eidgenossenschaft,“Bundesgesetz über
die politischen Rechte (vom 17. Dezember 1976 (Stand am 1. November 2015)),”
1976. [Online]. Available: https://www.admin.ch/opc/de/classified-compilation/
19760323/index.html

[32] Die schweizerische Bundeskanzlei (BK), “Verordnung der BK über die elektronische
Stimmabgabe (VEleS) (vom 13. Dezember 2013 (Stand am 1. Juli 2018)),”
2013. [Online]. Available: https://www.admin.ch/opc/de/classified-compilation/
20132343/index.html

[33] ——, “Erläuternder Bericht zur Anpassung der Verordnung der BK über
die elektronische Stimmabgabe (VEIeS) (vom 30. Mai 2018),” 2018.
[Online]. Available: https://www.bk.admin.ch/bk/de/home/politische-rechte/
e-voting/versuchsbedingungen.html

[34] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE transactions on
Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[35] E. Dubuis, “E-Demokratie: E-Voting,” in Handbuch E-Government. Wiesbaden:
Springer Fachmedien Wiesbaden, 2019, pp. 1–14. [Online]. Available: http:
//link.springer.com/10.1007/978-3-658-21596-5%5F39-1

[36] M. El Laz, B. Grégoire, and T. Rezk,“Security analysis of elgamal implementations,”
in 17th International Conference on Security and Cryptography. SCITEPRESS-
Science and Technology Publications, 2020, pp. 310–321.

https://eprint.iacr.org/2013/216
https://eprint.iacr.org/2013/216
https://eprint.iacr.org/2012/420
https://www.admin.ch/opc/de/classified-compilation/19780105/index.html
https://www.admin.ch/opc/de/classified-compilation/19995395/201809230000/101.pdf
https://www.admin.ch/opc/de/classified-compilation/19995395/201809230000/101.pdf
https://www.admin.ch/opc/de/classified-compilation/19760323/index.html
https://www.admin.ch/opc/de/classified-compilation/19760323/index.html
https://www.admin.ch/opc/de/classified-compilation/20132343/index.html
https://www.admin.ch/opc/de/classified-compilation/20132343/index.html
https://www.bk.admin.ch/bk/de/home/politische-rechte/e-voting/versuchsbedingungen.html
https://www.bk.admin.ch/bk/de/home/politische-rechte/e-voting/versuchsbedingungen.html
http://link.springer.com/10.1007/978-3-658-21596-5%5F39-1
http://link.springer.com/10.1007/978-3-658-21596-5%5F39-1

66 BIBLIOGRAPHY

[37] T. Elgamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469–472,
1985.

[38] E. F. Hao, “Schnorr Non-interactive Zero-Knowledge Proof,” RFC Editor, Tech.
Rep., 2017. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8235

[39] P. Fauzi and H. Lipmaa, “Efficient culpably sound nizk shuffle argument without
random oracles,” in Cryptographers’ Track at the RSA Conference. Springer, 2016,
pp. 200–216.

[40] P. Fauzi, H. Lipmaa, J. Siim, and M. Zaj ↪ac, “An efficient pairing-based shuffle
argument,” in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2017, pp. 97–127.

[41] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” in
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), 1987,
pp. 427–438.

[42] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification
and signature problems,” in CRYPTO, ser. Lecture Notes in Computer Science, vol.
263. Springer, 1986, pp. 186–194.

[43] C. Fontaine and F. Galand, “A survey of homomorphic encryption for nonspecial-
ists,” EURASIP J. Information Security, vol. 2007, 2007.

[44] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme for large
scale elections,” in International Workshop on the Theory and Application of Cryp-
tographic Techniques. Springer, 1992, pp. 244–251.

[45] J. Furukawa and K. Sako, “An efficient scheme for proving a shuffle,” in Annual
International Cryptology Conference. Springer, 2001, pp. 368–387.

[46] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key gen-
eration for discrete-log based cryptosystems,” J. Cryptol., vol. 20, no. 1, pp. 51–83,
2007.

[47] J. P. Gibson, R. Krimmer, V. Teague, and J. Pomares, “A review of e-voting: the
past, present and future,” Annales des Télécommunications, vol. 71, no. 7-8, pp.
279–286, 2016.

[48] K. Gjøsteen, “The Norwegian Internet Voting Protocol,” in Lecture Notes
in Computer Science, 2012, vol. 7187 LNCS, pp. 1–18. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-32747-6%5F1

[49] K. Gjøsteen, T. Haines, and M. R. Solberg, “Efficient mixing of arbitrary ballots
with everlasting privacy: How to verifiably mix the ppatc scheme,” Cryptology
ePrint Archive, Report 2020/1331, 2020, https://eprint.iacr.org/2020/1331.

[50] J. Groth, “Efficient maximal privacy in boardroom voting and anonymous broad-
cast,” in International Conference on Financial Cryptography. Springer, 2004, pp.
90–104.

https://www.rfc-editor.org/rfc/rfc8235
http://link.springer.com/10.1007/978-3-642-32747-6%5F1
https://eprint.iacr.org/2020/1331

BIBLIOGRAPHY 67

[51] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu,
“Aggregatable distributed key generation,” Cryptology ePrint Archive, Report
2021/005, 2021, https://eprint.iacr.org/2021/005.

[52] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis, “Chvote system specification
3.2,” IACR Cryptology ePrint Archive, vol. 2017, p. 325, 2017.

[53] R. Haenni and P. Locher, “Performance of shuffling: Taking it to the limits,” in
International Conference on Financial Cryptography and Data Security. Springer,
2020, pp. 369–385.

[54] R. Haenni, P. Locher, and N. Gailly, “Improving the performance of cryptographic
voting protocols,” in International Conference on Financial Cryptography and Data
Security. Springer, 2019, pp. 272–288.

[55] R. Haenni, P. Locher, R. Koenig, and E. Dubuis, “Pseudo-code algorithms for ver-
ifiable re-encryption mix-nets,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2017, pp. 370–384.

[56] T. Haines, S. J. Lewis, O. Pereira, and V. Teague, “How not to prove your election
outcome,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 644–
660.

[57] T. Haines and J. Müller, “Sok: Techniques for verifiable mix nets,” in 2020 IEEE
33rd Computer Security Foundations Symposium (CSF). IEEE, 2020, pp. 49–64.

[58] T. Haines, R. Gore, and B. Sharma, “Did you mix me? formally verifying verifiable
mix nets in electronic voting,” Cryptology ePrint Archive, Report 2020/1114, 2020,
https://eprint.iacr.org/2020/1114.

[59] F. S. Hardwick, A. Gioulis, R. N. Akram, and K. Markantonakis, “E-voting with
blockchain: An e-voting protocol with decentralisation and voter privacy,” in
iThings/GreenCom/CPSCom/SmartData. IEEE, 2018, pp. 1561–1567.

[60] S. Hauser and R. Haenni, “Implementing broadcast channels with memory for elec-
tronic voting systems,” JeDEM-eJournal of eDemocracy and Open Government,
vol. 8, no. 3, pp. 61–79, 2016.

[61] C. Hébant, D. H. Phan, and D. Pointcheval, “Linearly-homomorphic signatures and
scalable mix-nets,” in IACR International Conference on Public-Key Cryptography.
Springer, 2020, pp. 597–627.

[62] S. Heiberg, A. Parsovs, and J. Willemson, “Log analysis of es-
tonian internet voting 2013–2014,” in Lecture Notes in Com-
puter Science, 2015, vol. 9269, pp. 19–34. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-22270-7%5F2https://eprint.
iacr.org/2015/1211.pdfhttp://link.springer.com/10.1007/978-3-319-22270-7%5F2

[63] R. Henry, A. Herzberg, and A. Kate, “Blockchain access privacy: Challenges and
directions,” IEEE Security Privacy, vol. 16, no. 4, pp. 38–45, 2018.

https://eprint.iacr.org/2021/005
https://eprint.iacr.org/2020/1114
https://link.springer.com/chapter/10.1007/978-3-319-22270-7%5F2 https://eprint.iacr.org/2015/1211.pdf http://link.springer.com/10.1007/978-3-319-22270-7%5F2
https://link.springer.com/chapter/10.1007/978-3-319-22270-7%5F2 https://eprint.iacr.org/2015/1211.pdf http://link.springer.com/10.1007/978-3-319-22270-7%5F2

68 BIBLIOGRAPHY

[64] L. Hirschi, L. Schmid, and D. Basin, “Fixing the achilles heel of e-voting: The
bulletin board,” Cryptology ePrint Archive, Report 2020/109, 2020, https://eprint.
iacr.org/2020/109.

[65] M. Hirt, “Receipt-free K -out-of-L voting based on elgamal encryption,” in Towards
Trustworthy Elections, New Directions in Electronic Voting, ser. Lecture Notes
in Computer Science, D. Chaum, M. Jakobsson, R. L. Rivest, P. Y. A. Ryan,
J. Benaloh, M. Kutylowski, and B. Adida, Eds., vol. 6000. Springer, 2010, pp.
64–82. [Online]. Available: https://doi.org/10.1007/978-3-642-12980-3 3

[66] A. Hofmann, “Security Analysis and Improvements of a Blockchain-based Remote
Electronic Voting System,” Ph.D. dissertation, University of Zurich, 2020.

[67] H. Jonker, S. Mauw, and J. Pang, “Privacy and verifiability in voting systems:
Methods, developments and trends,” Computer Science Review, vol. 10, pp. 1–30,
2013.

[68] H. Jonker and J. Pang,“Bulletin boards in voting systems: Modelling and measuring
privacy,” in ARES. IEEE Computer Society, 2011, pp. 294–300.

[69] C. D. M. Jr., “Report of the national workshop on internet voting: issues and
research agenda,” in Proceedings of the 2000 National Conference on Digital
Government Research, {DG.O} 2000, Los Angeles, CA, USA, May 15-17, 2000,
2000. [Online]. Available: http://dl.acm.org/citation.cfm?id=1123096

[70] A. Juels, D. Catalano, and M. Jakobsson,“Coercion-resistant electronic elections,” in
Towards Trustworthy Elections, ser. Lecture Notes in Computer Science. Springer,
2010, vol. 6000, pp. 37–63.

[71] A. Kate and I. Goldberg, “Distributed key generation for the internet,” in 2009 29th
IEEE International Conference on Distributed Computing Systems. IEEE, 2009,
pp. 119–128.

[72] C. Killer, B. Rodrigues, E. J. Scheid, M. Franco, M. Eck, N. Zaugg, A. Scheitlin,
and B. Stiller,“Provotum: A blockchain-based and end-to-end verifiable remote elec-
tronic voting system,” in 2020 IEEE 45th Conference on Local Computer Networks
(LCN), 2020, pp. 172–183.

[73] C. Killer, B. Rodrigues, R. Matile, E. John Scheid, and B. Stiller, “Design and im-
plementation of cast-as-intended verifiability for a blockchain-based voting system,”
in Proceedings of the 35th Annual ACM Symposium on Applied Computing, ser.
SAC ’20. Association for Computing Machinery, 03 2020, pp. 286–293.

[74] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in electronic voting pro-
tocols,” in ESORICS, ser. Lecture Notes in Computer Science, vol. 6345. Springer,
2010, pp. 389–404.

[75] R. Krimmer, A Structure for New Voting Technologies: What They Are, How They
Are Used and Why: Bridging the Gap Between Information Systems Research and
Practice. Springer, 01 2019, pp. 421–426.

https://eprint.iacr.org/2020/109
https://eprint.iacr.org/2020/109
https://doi.org/10.1007/978-3-642-12980-3_3
http://dl.acm.org/citation.cfm?id=1123096

BIBLIOGRAPHY 69

[76] R. Küsters, T. Truderung, and A. Vogt, “Accountability: definition and relation-
ship to verifiability,” in Proceedings of the 17th ACM conference on Computer and
communications security, 2010, pp. 526–535.

[77] ——, “Verifiability, privacy, and coercion-resistance: New insights from a case
study,” in 2011 IEEE Symposium on Security and Privacy. IEEE, 2011, pp. 538–
553.

[78] R. Kusters, T. Truderung, and A. Vogt, “Clash attacks on the verifiability of e-
voting systems,” in 2012 IEEE Symposium on Security and Privacy. IEEE, 2012,
pp. 395–409.

[79] S. J. Lewis, O. Pereira, and V. Teague, “How not to prove your election outcome The
use of non-adaptive zero knowledge proofs in the Scytl-SwissPost Internet voting
system, and its implications for decryption proof soundness,” pp. 1–11, 2019.

[80] Y. Liu and Q. Wang, “An e-voting protocol based on blockchain,” IACR Cryptology
ePrint Archive, vol. 2017, p. 1043, 2017.

[81] R. Matile, “Cast-as-Intended Verifiability in Blockchain-based Electronic Voting for
Swiss National Elections,” Ph.D. dissertation, University of Zurich, 2018. [Online].
Available: https://www.merlin.uzh.ch/contributionDocument/download/11375

[82] R. Matile and C. Killer, “Privacy, Verifiability, and Auditability in Blockchain-based
E-Voting,” Ph.D. dissertation, University of Zurich, 2018. [Online]. Available: https:
//files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/mp-raphael-christian.pdf

[83] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for boardroom
voting with maximum voter privacy,” in Financial Cryptography, ser. Lecture Notes
in Computer Science, vol. 10322. Springer, 2017, pp. 357–375.

[84] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008. [Online].
Available: https://bitcoin.org/bitcoin.pdf

[85] C. A. Neff, “A verifiable secret shuffle and its application to e-voting,” in Proceedings
of the 8th ACM conference on Computer and Communications Security, 2001, pp.
116–125.

[86] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business & Infor-
mation Systems Engineering, vol. 59, no. 3, pp. 183–187, 2017.

[87] R. Oppliger, Contemporary cryptography, ser. Artech House computer security se-
ries. Artech House, 2005.

[88] C. Park, K. Itoh, and K. Kurosawa, “Efficient anonymous channel and all/nothing
election scheme,” in Workshop on the Theory and Application of of Cryptographic
Techniques. Springer, 1993, pp. 248–259.

[89] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing,” in Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptology, ser. CRYPTO ’91. Berlin, Heidelberg: Springer-Verlag,
1991, p. 129–140.

https://www.merlin.uzh.ch/contributionDocument/download/11375
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/mp-raphael-christian.pdf
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/mp-raphael-christian.pdf
https://bitcoin.org/bitcoin.pdf

70 BIBLIOGRAPHY

[90] ——, “A threshold cryptosystem without a trusted party,” in EUROCRYPT, ser.
Lecture Notes in Computer Science. Springer, 1991, vol. 547, pp. 522–526.

[91] O. Pereira and V. Teague, “Report on the SwissPost-Scytl e-voting system , trusted-
server version,” pp. 1–41, 2019.

[92] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic
curves,” arXiv preprint quant-ph/0301141, 2003.

[93] R. L. Rivest, A. Shamir, and L. Adleman,“A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp.
120–126, 1978.

[94] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme - A practical solution
to the implementation of a voting booth-,” Lecture Notes in Computer Science, vol.
921, pp. 393–403, 1995.

[95] C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology,
vol. 4, no. 3, pp. 161–174, 1991.

[96] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p. 612–613,
Nov. 1979.

[97] F. Shirazi, S. Neumann, I. Ciolacu, and M. Volkamer, “Robust electronic voting:
Introducing robustness in civitas,” in 2011 International Workshop on Requirements
Engineering for Electronic Voting Systems. IEEE, 2011, pp. 47–55.

[98] W. D. Smith, “Cryptography meets voting,” Compute, vol. 10, p. 64, 2005.
[Online]. Available: http://www.hit.bme.hu/˜buttyan/courses/BMEVIHI5316/
Smith.Crypto%5Fmeets%5Fvoting.pdf

[99] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine,
and J. A. Halderman, “Security Analysis of the Estonian Internet Voting
System,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’14, no. May. New York, New York, USA: ACM
Press, 2014, pp. 703–715. [Online]. Available: https://dl.acm.org/citation.cfm?id=
2660315http://dl.acm.org/citation.cfm?doid=2660267.2660315

[100] O. Spycher and M. Volkamer, E-Voting and Identity, ser. Lecture Notes
in Computer Science, A. Kiayias and H. Lipmaa, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, vol. 7187, no. September. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-32747-6

[101] W. Stallings, Network Security Essentials: Applications and Standards, 6th Edition.
Pearson Education, 2017.

[102] M. H. Suwito, Y. Ueshige, and K. Sakurai, “Evolution of bulletin board & its appli-
cation to e-voting – a survey,” Cryptology ePrint Archive, Report 2021/047, 2021,
https://eprint.iacr.org/2021/047.

http://www.hit.bme.hu/~buttyan/courses/BMEVIHI5316/Smith.Crypto%5Fmeets%5Fvoting.pdf
http://www.hit.bme.hu/~buttyan/courses/BMEVIHI5316/Smith.Crypto%5Fmeets%5Fvoting.pdf
https://dl.acm.org/citation.cfm?id=2660315 http://dl.acm.org/citation.cfm?doid=2660267.2660315
https://dl.acm.org/citation.cfm?id=2660315 http://dl.acm.org/citation.cfm?doid=2660267.2660315
http://link.springer.com/10.1007/978-3-642-32747-6
https://eprint.iacr.org/2021/047

BIBLIOGRAPHY 71

[103] J. Svensson and R. Leenes, “E-voting in Europe: Divergent democratic practice,”
Information Polity, vol. 8, no. 1-2, pp. 3–15, 2003. [Online]. Available:
http://content.iospress.com/articles/information-polity/ip000023

[104] B. Terelius and D. Wikström, “Proofs of restricted shuffles,” in International Con-
ference on Cryptology in Africa. Springer, 2010, pp. 100–113.

[105] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and D. I. Kim,
“A survey on consensus mechanisms and mining strategy management in blockchain
networks,” IEEE Access, vol. 7, pp. 22 328–22 370, 2019.

[106] D. Wikström, “Verificatum mix-net (vmn),” Sep. 2020. [Online]. Available:
https://www.verificatum.org/html/product vmn.html

[107] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger.”
Ethereum Project Yellow Paper, 2014.

[108] K. Wüst and A. Gervais, “Do you Need a Blockchain?” in 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), no. i. IEEE, 6 2018, pp. 45–54.

http://content.iospress.com/articles/information-polity/ip000023
https://www.verificatum.org/html/product_vmn.html

72 BIBLIOGRAPHY

Abbreviations

BS Ballot Secrecy
CaI Cast-as-intended
CaR Counted-as-recorded
CR Coercion-Resistance
DDH Decisional Diffie-Hellmann
DKG Distributed Key Generation
DL Distributed Ledger
E2E-V End-To-End Verifiability
El-V Eligibility Verifiability
IV Individual Verifiability
NIZKP Non-Interactive Zero Knowledge Proof
PoA Proof of Authority
PoW Proof of Work
PBB Public Bulletin Board
RaC Recorded-as-cast
REV Remote Electronic Voting
RF Receipt-Freeness
TTP Trusted Third Party
UP Unconditional Privacy
UV Universal Verifiability
ZKP Zero Knowledge Proof

73

74 ABBREVIATONS

List of Figures

3.1 Pseudo-Code Permutation Algorithm . 14

3.2 Pseudo-Code Shuffle Algorithm . 15

3.3 A generic Σ protocol . 18

3.4 Key Generation Proof . 19

3.5 Decryption Proof . 20

3.6 Designated Verifier Re-Encryption Proof 21

3.7 Shuffle Proof Generation . 23

3.8 Shuffle Proof Verification . 24

3.9 Algorithm to retrieve n independent generators for vote idvote. 25

3.10 Algorithm to generate permutation commitment for permutation ψ. 25

3.11 Algorithm to generate n challenge values for a set of public input val-
ues e, ẽ, c, pk. 26

3.12 Algorithm to generate commitment chain for the permuted public chal-
lenges ũ. 26

5.1 Provotum Stakeholders . 33

5.2 Provotum’s Voting Protocol Phases . 35

5.3 Pre-Voting Phase - Registration Step - Create Vote & Store Questions . . 36

5.4 Pre-Voting Phase - Key Generation Step - Key Pair Generation, Proof
Generation & Verification, Storage of Public Key Share 36

5.5 Pre-Voting Phase - Key Generation Step - Combine Public Key Shares to
Create Vote Public Key . 37

5.6 Voting Phase - Ballot Generation, Ballot Randomization & Casting Steps . 38

75

76 LIST OF FIGURES

5.7 Post-Voting Phase - Ballot Shuffling Step - Ballot Shuffling, Proof Gener-
ation/Verification and Storage . 39

5.8 Post-Voting Phase - Tallying Step - Ballot Shuffling, Partial Decryption . . 40

5.9 Post-Voting Phase - Results Step - Combine Partial Decryptions, Decrypt
and Reveal Plaintexts . 40

6.1 Provotum Prototype Packages . 41

6.2 node/pallets/mixnet/src/lib.rs: the main entry point of the mixnet
pallet. 42

6.3 The default message shown by the provotum-cli. For each component, a
different subcommand provides the built-in operations. 43

6.4 The figure shows the function header and documentation for encrypt_encode
which encodes and encrypts a message/vote such that it is possible to per-
form additive homomorphic operations on the ciphertext. The code is found
in the following file: crypto/src/encryption.rs 44

6.5 The figure shows the function documentation and implementation for par-
tial_decrypt_b which decrypts the component b of an ElGamal encryp-
tion e = (a,b) given a partially decrypted e. The code is found in the
following file: crypto/src/encryption.rs 45

7.1 Ballot shuffling performance evaluation for different sizes of p (group mod-
ulus) and, therefore, different security levels. The figure shows the duration
in seconds plotted against various batch sizes, i.e., the number of votes in
an operation. Both axis apply a logarithmic scale. Thus, a 45-degree slope
represents linear growth. 55

7.2 Mixnet performance evaluation for p of size 2048 bits. The figure shows the
duration in seconds plotted against various batch sizes, i.e., the number of
votes in an operation. Both axis apply a logarithmic scale. Thus, a 45-
degree slope represents linear growth. 56

7.3 Partial decryption performance evaluation for p of size 2048 bits. The figure
shows the duration in seconds plotted against various batch sizes, i.e., the
number of votes in an operation. Both axis apply a logarithmic scale. Thus,
a 45-degree slope represents linear growth. 57

List of Tables

7.1 Visualization of the privacy properties across all three Provotum projects. . 47

7.2 Visualization of the verifiability properties across all three Provotum projects. 49

7.3 Visualization of the practical properties across all three Provotum projects. 51

7.4 Comparison of cryptographic operations across the existing Provotum projects
in terms of modExp. 52

7.5 The performance difference of the two message encoding strategies (see
Section 3.4.3) for p of size 2048 bits and q = p−1

2
. 54

77

78 LIST OF TABLES

Appendix A

Installation Guidelines

The prototype’s source code, all packages developed as part of this thesis and the pre-
built Docker container images can be found in the Provotum GitHub organization in the
provotum-mixnet repository at https://github.com/provotum/provotum-mixnet.

A README is provided for the main repository as well as for each package. The intent of
this document is to simplify familiarizing oneself with the project and to provide answers
to frequently reoccurring questions. Instructions for running a demo of the prototype are
also contained. A Docker Compose1 script is provided alongside to simplify the technical
aspects of running a demo. To ensure compatibility, Docker version 20.10 and Docker
Compose 1.27.4 or higher are required.

1https://docs.docker.com/compose

79

https://github.com/provotum/provotum-mixnet
https://docs.docker.com/compose

80 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

The following items are contained in an archive accompanying this thesis:

• A PDF file of this report.

• The LATEX source code of this report.

• The images of this report.

• The source code of the prototype.

• The source code of the benchmarks.

• The raw and processed results from the different benchmarks.

81

	Abstract
	Kurzfassung
	Acknowledgments
	Introduction
	Project Goals and Contributions
	Thesis Outline

	Background
	Voting Protocol Properties
	Privacy
	Verifiability
	Practical Properties
	Trust Assumptions & Trade-Offs

	Distributed Ledger Technology
	Permission Models & Consensus Mechanisms
	DL as Public Bulletin Board

	Cryptography
	Hash Functions
	Public Key Cryptography
	Homomorphic Encryption
	ElGamal Cryptosystem
	Security
	Key Generation, Encryption and Decryption
	Message Encoding

	Re-Encryption
	Mixnets
	Decryption Mixnets
	Re-Encryption Mixnets
	Summary

	Multi-Party Computation
	Distributed Key Generation
	Cooperative Decryption

	Zero-Knowledge Proofs
	Key Generation Proof
	Decryption Proof
	Re-Encryption Proof
	Shuffle Proof

	Related Work
	Application-level Privacy
	Network-level Privacy
	Everlasting Privacy
	Existing REV Systems
	Distributed Ledgers and REV

	System Design
	Stakeholders
	Voting Protocol
	Identity Management
	Pre-Voting Phase
	Voting Phase
	Post-Voting Phase

	Implementation
	Packages
	Documentation
	Technical Limitations

	Discussion and Evaluation
	Privacy
	Ballot Secrecy
	Receipt-Freeness
	Coercion-Resistance

	Verifiability
	Cast-as-Intended Verifiability
	Individual & Recorded-as-Cast Verifiability
	Counted-as-Recorded
	Summary

	Practical Properties
	Fairness
	Accountability
	Robustness
	Votes and Elections

	Scalability
	Theoretical Runtime Performance
	Benchmark Results

	Conclusion and Future Work
	Conclusion
	Future Work
	Cast-as-Intended (CaI) Verifiability
	k/n Distributed Key Generation
	Technical Improvements
	Identity Management

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Installation Guidelines
	Contents of the CD

