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Abstract

We present the implementation, and evaluation of a software library for efficient and parametrizable edge-
collapses and vertex-splits. The library consists of a fast mesh data structure, decimation and refinement com-
ponents and includes a set of modules that guide the decimation and refinement processes. The library is free of
external dependencies and is modular in design. We investigate the choices we made during development, and
give a detailed description of our implementation. We evaluate our implementation in terms of decimation quality
and computational performance and compare it to other existing tools and libraries. Our evaluation demonstrates
that both in terms of quality and performance our implementation can match or beat existing solutions.
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1 Introduction

The representation of 3-dimensional models in computers is widespread. They are used in many application areas,
including the visualization and analysis of data, architectural and industrial design, and are common in film and
game industries. With the increasing prevalence of 3-dimensional models, the tools and techniques that generate
such objects continually evolve and, with them, the complexity of the models they produce. The storage and
processing requirements to handle these objects can be significant. Despite advancements in computer hardware,
highly detailed models often exceed the available capacity in many application areas. In order to provide a tradeoff
between model size and quality, mesh simplification algorithms are used to reduce the complexity of objects.

Mesh simplification The simplification of polygonal meshes has been an active area of research for several
decades [Cla76]. Research in this area has reached maturity, and several effective tools and algorithms are avail-
able. Mesh simplification describes a set of algorithms that reduce the number of elements in a polygonal mesh
while approximating the original as well as possible. Figure 1.1 illustrates the simplification of an initial high
detail mesh into a mesh that has less than 0.5% of the triangles but retains the overall shape of the original mesh.

Figure 1.1: Simplification of a triangle mesh. The model on the left with 69 630 triangles is simplified to a mesh
with 328 triangles on the right.

Edge collapse Several different approaches to mesh simplification exist. One such approach is to decimate
a mesh by repeatedly collapsing one of its edges until a stopping criterion is satisfied. An edge collapse consists
of removing an edge from the mesh and replacing its two endpoint vertices with a new vertex. In the process, the
two triangles adjacent to the edge are eliminated from the mesh. The quality of the resulting mesh depends on
two factors: First, in each iteration, a choice has to be made on which edge to collapse next. Second, the position
of the new vertex has to be chosen.

Vertex split The edge collapse operator has an inverse operation called the vertex split. A vertex split involves
removing a vertex from the mesh and inserting two vertices connected by an edge in its place. In doing so, two
triangles are added to the mesh. Thus, the edge collapse operator simplifies the mesh, and the vertex split operator
adds detail to it.

Progressive Refinement The incremental nature of the decimation algorithm and the ability to undo the
effects of its operators has the nice property in that it allows the continuous refinement of a model by removing



1 Introduction

or adding detail to it. The approach, also known as continuous level of detail, precomputes a list of refinement
operations, which can then be applied in a separate run-time phase.

Selective Refinement A related approach is to refine a mesh by adding more detail to certain areas while
removing detail in others. This approach has been widely studied in the context of view-dependent refinement,
where the desired levels of detail are determined by the position and direction of a virtual camera.

1.1 Contributions

This thesis aims to design and implement efficient and parametrizable algorithms that utilize edge collapses and
vertex split operations to simplify and refine triangle meshes.

As part of this thesis, we have developed the C++ library Pmesh, which we evaluate and compare to other existing
libraries. The libraries central design principle is the modularity of its components, allowing for independent
parametrization of each stage of the mesh decimation and refinement process. At the centre of the library is a fast
mesh data structure, based on the directed edge structure [CKS98].

1.2 Overview

The remainder of this thesis is organized as follows:
* In Chapter 2 we discuss the background and related work

* Chapter 3 contains a detailed description of the algorithms we use and the choices we made for our imple-
mentation.

* In Chapter 4 we describe the implementation and interface of each of the components of the library

In Chapter 5 we compare our algorithm to existing solutions both in terms of quality and performance

* Finally in Chapter 6 we summarize the conclusions of our work.
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2.1 Mesh Simplification

Mesh simplification algorithms aim to reduce the complexity of a given by transforming it into another mesh with
fewer triangles. Quality criteria usually control the simplification procedure intending to preserve the shape or
other properties of the mesh as much as possible. A wide range of algorithms for mesh simplification have been
proposed and can be roughly categorized into two categories:

Vertex clustering This approach computes the bounding of a mesh and divides it into a number of cells. All
vertices within one cell are replaced by a representative vertex [RB93]. Triangles that have become degenerate
as a result are subsequently removed from the mesh. While the approach can be very fast, it may cause low-
quality simplifications.

Inremental decimation These algorithms iteratively remove one vertex and two triangles from the mesh.
The order in which the operations are applied is determined by a cost function.

2.2 Incremental Decimation

The iterative mesh decimation algorithms remove one vertex from the mesh at a time. At each step, the best
candidate for removal is determined by a user-defined cost function. The basic removal is performed by applying
a topological operator.

2.2.1 Topological Operators

The three main operators that perform a decimation step are as follows [Hor15]:
* The vertex removal operator deletes one vertex and retriangulates the resulting hole.

* The edge collapse operator joins two neighbouring vertices p and p, by collapsing the edge between them
and moving them to a new position r [Hop96].

* The halfedge collapse operator moves a vertex p to the position of one of its neighbours ¢. The halfedge
collapse operator can be considered a special case of the edge collapse operator where the new vertex
position r coincides with g.

Edge collapses, and halfedge collapses can only be performed when the topological constraints discussed in
Section 3.2.1 are met. If those criteria are satisfied, all of the above operators preserve the mesh topology, i.e. no
holes in the original mesh will be closed, and no connected components will be eliminated [BKP*10].

Each of the above operators has an inverse operation as shown in Figure 2.1. For the edge collapse operator, the
vertex split, and for the halfedge collapse, the restricted vertex split. The inverse operations can be used to revert
the changes to the mesh and thereby allow running a decimation scheme backwards by inserting successively
more detail into the mesh [BKP10].
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Vertex Removal
B et
-

Vertex Insertion

Edge Collapse
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Vertex Split

Halfedge Collapse
_—
+-—

Restricted Vertex Split

Figure 2.1: Topological operators and their inverses [BKP110].

2.2.2 Cost function

In order to determine the best candidate vertex or edge for removal, a cost function is evaluated to assign a cost
to each possible operation. The cost function is commonly defined to compute an approximation error of the
simplified mesh. The approximation error can be defined as a distance measure that computes the distance of a
triangle in the simplified mesh to its corresponding sub patch in the original mesh. It may also measure the visual
differences between renderings of the original mesh and its simplified version. Apart from the approximation
error, other so-called fairness criteria may also be used to guide the ordering of operations. For example, the
criteria could include penalties if a triangle flips, i.e., the normal before and after the collapse changes by more
than a certain amount.

A widely used distance measure in the context of mesh decimation is the Quadric Error Metric [GH97]. It
works by assigning distance values to each vertex of the decimated mesh. The distance values are computed as
the sum of squared distances from the planes formed by each triangle surrounding a vertex. The metric can be
computed efficiently and only requires the storage of a symmetric 4 x 4 Q matrix per vertex. The Quadric Error
Metric is discussed in detail in Section 3.4.1.

2.3 Progressive Meshes

The progressive mesh algorithm introduced in [Hop96] is based on the idea that a mesh is not stored in its original
form but rather as a drastically simplified base mesh and a list vertex splits that can restore the detailed mesh.
Figure 2.2 shows an example of the same mesh represented at different levels of detail. The leftmost image
represents the coarse base mesh, consisting of only a few triangles. To the right, more triangles are added into the
mesh through vertex splits operations until the fully detailed mesh is restored in the rightmost image.

In a preprocessing stage, the contruction of a progressive mesh starts with initial high-detail mesh M = M" which
is transformed into a drastically simplified mesh M° by applying a sequence of n successive edge collapses:

coollapse, 1 collapsey 1 collapseg

MO

(M = M")
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Figure 2.2: Progressive mesh at different levels of detail. [Hop96]

The detailed mesh can be successively restored by applying the transformations in reverse order as their inverse
vertex split operations:

split split splitn—1
MO 20, gt 2 L (M = M)

Hoppe [Hop96] refers to the notation (MY, splity, .. ., split,_1) as the progressive mesh representation of M.
Each vertex split is encoded as split(s,l,r,t, A). As illustrated in Figure 2.3a), the variables s and ¢ refer to the
endpoints of the collapsed edge, I and r refer to the cut vertices of the split, and A denotes attribute information
of the affected vertices, including the positions of the end vertices v and v;.

. ecol
v
1 v,
Y
vsplit

Figure 2.3: Edge collapse transformation [Hop96]

2.4 Selective Refinement

The algorithm that was described in 2.3 allows the transformation of an entire mesh into different levels of detail.
For certain applications, it is, however, desirable to refine only certain areas of a mesh. One such widely used
application is real-time rendering, where only the visible areas of a mesh require greater detail at a single point
in time. Other areas that are not directly visible to the camera should be as coarse as possible in order to save
processing resources.

One approach to add detail only in desired areas of a mesh would be to iterate through the list of vertex splits of
a progressive mesh and split only those vertices where additional detail in the vertexes neighbourhood is desired
[Hop96]. However, there exists a dependency among the different operations. A vertex split cannot be performed
unless the corresponding vertex is currently part of the mesh. Skipping a vertex split prevents splitting the vertices
it would generate and, in turn, all of their ancestors. This dependency among the vertices can represented through
a binary forest of vertices, referred to as a merge tree [XESV97] or vertex hierarchy [Hop97].

In a vertex hierarchy illustrated in Figure 2.4, the root nodes correspond to the vertices in the coarsest mesh M°,
and the leaf nodes are the vertices of the original mesh M. The two children of a vertex v are the vertices v and v
that are generated by splitting v. The arcs connecting the parent and child represent the dependencies that impose
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Figure 2.4: Vertex hierachy. [Hop97]

a partial ordering on the operations. Every possible cut across the forest represents a different simplification of
the original mesh. The nodes below this front represent vertices that have been removed from the mesh as a result
of an edge collapse. The nodes on or above the front represent the vertices that are part of the current mesh.

The vertex hierarchy is constructed in a preprocessing stage, in which the edge collapses used to simplify a

mesh are recorded, and the parent-child relations are set. At run-time, the nodes that currently lie on the front are
tested against specific criteria to determine if they should be collapsed or split. Each edge collapse or vertex split
operation moves the front up or down in the hierarchy.
In [PajO1] an optimization to the vertex hierarchy referred to as a halfedge collapse hierarchy is presented. Rec-
ognizing that the leaf nodes of a vertex hierarchy do not contain any information required for an edge collapse or
vertex split, the number of nodes in the hierarchy can be reduced by half. In the halfedge collapse hierarchy, each
node represents a halfedge collapse instead of a vertex, as illustrated in Figure 2.5.

not collapsed half-edges
collapsed half-edges
— — front F of active nodes

Figure 2.5: Half-edge collapse hierarchy. [PD04]

2.4.1 Neighbourhood Dependencies

The dependencies represented by the vertex hierarchy are not in general sufficient to guarantee that an operation
will not cause nonmanifold connectivity in a mesh or cause triangles to fold over. Several approaches to address
this problem have been proposed in the literature:

* In [XV96] the one-ring neighbours of each vertex generated as a result of an edge collapse in the prepro-
cessing stage are explicitly stored. At run-time, an edge collapse or vertex split is only valid if the recorded
neighbour vertices exist and are adjacent in the current simplification. If any vertex does not exist in the
current mesh, additional edge collapse or vertex split transformations are necessary to activate the vertex.
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* In [Hop97] the four faces adjacent to the two collapsed triangles are stored in the preprocessing stage and
used as a condition at run-time.

* In [ESV99] vertex numbering is used to implicitly test for the conditions formulated in [XV96].

* In [KLO1] the concept of fundamental cut vertices is introduced to allow the arbitrary reordering of ver-
tex splits while still guaranteeing proper mesh connectivity. Edge collapses are restricted only by their
topological constraints.

* In [Paj01] vertex splits require that the four faces adjacent to the two collapsed faces are active in the mesh.
If they are not active, additional vertex splits are performed. The approach does not require any additional
storage as the required information is already present in the employed mesh data structure. As in [KLO1]
edge collapse are only restricted by their topological constraints.

* In [HSHO9] the storage cost to test for the conditions in [Hop97] is reduced by storing the maximum ID of
the vertices that create the required triangle faces.

The less restricted approaches as formulated in [KLO1] and [PajO1] allow for drastic differences in the level of
detail between neighbouring areas of a mesh. This can cause undesirable fold-overs of some faces of the mesh,
however, since the faces adjacent to a vertex may be different to what they were during the preprocessing stage.

2.5 Mesh Data structures

The efficiency of algorithms operating on a mesh depends in large part on the underlying data structure used to
represent the mesh. A wide variety of mesh data structures have been proposed [SB11]. In order to evaluate
different data structures, we have to take into account topological and algorithmic considerations. Following
[BPK08] we formulate the following criteria for evaluating the data structure used in our implementation:

* Time to answer adjacency queries, such as finding neighbouring vertices, faces, or edges.

* Time to perform vertex split and edge collapse operations

* Time to construct the data structure

* Memory efficiency and redundancy

In the following, we outline some of the common types of data structures used for the representation surface
meshes and finally draw a comparison.

2.5.1 Face Based Data Structures

The triangle list data structure directly stores 3 vertex positions for each triangle in the mesh and represents the
simplest way to store a surface mesh.

The indexed face set data structure avoids the redundancy of the triangle list by storing an array of vertices along
with a separate array that contains sets of indices that encode the triangles in the mesh. The structure is widely
used in many 3D file formats and rendering APIs such as OpenGL.

The face-based data structures do not explicitly store any information about neighbouring faces or vertices and,
thus, require expensive searches whenever adjacency information is required.

2.5.2 Edge Based Data Structures

Edge-based data structures explicitly store connectivity information between the edges, faces and vertices of a
mesh. They are therefore suited for efficient traversal of a mesh. Some well known examples include the winged
edge structure [Bau72] and quad-edge [GS85] structures.
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2.5.3 Halfedge Based Data Structures

Halfedge based data structures split each edge in a mesh into two oriented halfedges. They can thereby avoid
case distinctions needed in edge-based structures when traversing a mesh. The halfedges are oriented in counter-
clockwise order around each triangle and along mesh boundaries. The halfedge stores the references to encode
the mesh connectivity information as illustrated in Figure 2.6;

HalfedgeRef opposite

Vertex Halfedge .

Point position VertexRef vertex

HalfedgeRef halfedge FaceRef face g 0
HalfedgeRef next A

Face HalfedgeRef prev o -

aad
HalfedgeRef halfedge O/

Figure 2.6: Connectivity information stored in a halfedge-based data structure. [BKP'10]

2.5.4 Directed Edge Structure

The directed edge data structure is a variant of the halfedge based data structures specifically designed for triangle
meshes. It is particularly memory-efficient because it encodes some of the connectivity information implicitly
by grouping the three halfedges belonging to a triangle contiguously in memory. We discuss the direct edge data
structure in detail in Section3.1

2.5.5 Comparison

Table 2.1 contains an overview of the data structures and lists their memory requirements. The values for the
memory consumption are taken from [BKP*10] and assume 12 bytes to store a vertex position and, on average,
two faces per vertex. The directed edge structure has the lowest memory consumption out of the data structures
that feature efficient adjacency queries. The data structure furthermore allows efficient updates to the mesh
connectivity as part of an edge collapse or vertex split as shown in Section3.1. We have therefore chosen to base
our implementation on the directed edge structure.

Data Structure ~ Adjacency Queries Memory Consumption

Triangle List o(V) 72 bytes/vertex
Indexed Face Set o(V) 36 bytes/vertex
Winged Edge 0(1) 120 bytes/vertex
Halfedge O(1) 144 bytes/vertex
Directed Edge 0(1) 64 bytes/vertex

Table 2.1: Comparison of mesh data structures.
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3.1 Mesh Data Structure
3.1.1 Directed Edge Structure

We decided to base our mesh data structure on the directed edge structure [CKS98], because of its low memory
requirements, its efficient adjacency queries and local modifications. We base our implementation in large part
on the description in [Paj01].

hE.prev he.next

Figure 3.1: Directed edge data structure.

The directed edge data structure is based on the concept of halfedges. Each halfedge he stores an index to
its starting vertex he.vtx and an index to its reverse twin halfedge he.twin. The halfedges for each triangle are
stored consecutively in counterclockwise order as illustrated in Figure 3.2. This memory layout thereby implicitly
encodes the connectivity between the three halfedges belonging to a triangle.

The data structure requires no additional information to store the mesh connectivity. The memory requirement
is thus only 8 bytes per halfedge or 24 bytes per triangle. The vertex data is kept in a separate buffer and accessed
using the vertex index stored for each halfedge. The authors of [CKS98] use an additional array to store a reference
from each vertex to an outgoing halfedge. We have found no need for these additional references.

_____

Figure 3.2: Memory layout of the directed edge structure. [CKS98]

Given that the halfedges of a triangle are stored consecutively, the indices of the three halfedges belonging to a
face f can be retrieved as follows

halfedge(f,i) =3f +1i, i=0,1,2 3.1)

The face of a halfedge with index A and its index within that face are thus given by

face(h) =h/3, and faceindex(h) =h mod 3 (3.2)
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The previous halfedge he.prev and next halfedges he.next of halfedge he with index h can be determinded with
the following expressions (in C-style pseudocode)

prev(h) = (h%3 == 0) 2 (h+2) : (h-1) (3.3)
next(h) = (h%3 == 2) 2 (h-2) : (h+l) '

Rotating a halfedge he one step around its starting vertex he.vtx in counterclockwise (CCW) and clockwise (CW)
order is done by
rotateCCW (he) = he.prev.twin

. 3.4
rotateCW (he) = he.twin.next

Despite its low memory requirements, the data structure can conveniently answer neighbourhood queries using
the functions presented above. As an example, enumerating the one-ring vertex neighbours around a halfedges
starting vertex he.vtx can be done by the code segment shown in Listing 3.1. The function sets the vertex indices
idz[0], ..., idx[n — 1] of the n neighbouring vertices.

1n =20

2 the = he

3 do

4 idx [n++] = the.next.vtx

5 the = the.prev.twin // rotate CCW
6 while the != he

7 return n

Listing 3.1: Enumerating one-ring neighbours

3.1.2 Edge Collapse

As illustrated in Figure 3.3 An edge collapse of halfedge he involves connecting two halfedges a and b, and ¢
and d respectively. In order to connect the halfedges, their reverse twin halfedges are set to reference each other.
Updating the mesh connectivity for the collapse of halfedge he for triangles A and B is given by

he.prev.twin.twin = he.next.twin 35)
he.next.twin.twin = he.prev.twin '

and for the triangles B and C'

he.twin.next.twin.twin = he.twin.prev.twin (3.6)
he.twin.prev.twin.twin = he.twin.next.twin .

An edge collapse does not alter the data of the halfedges that are part of the removed triangles. They are simply
disconnected from the rest of the mesh and should be ignored when rendering or converting the mesh to another
format. In order to keep track of the removed triangles in the mesh, we use a separate array that stores a binary
flag for each triangle to indicate whether it is collapsed.

Collapsing an edge, additionally involves assigned the new target vertex index for each of the halfedges inci-
dent to the new vertex. This is done by rotating around the vertex, starting from one of the incident halfedges
from triangles A, B, C and D in Figure 3.3 (he.prev.twin, he.next.twin.next, he.twin.next.twin.next, or
he.twin.prev.twin). The update can be done as shown in the code segment in Listing 3.2

10
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.

Figure 3.3: Updating connectivity for edge collapse and vertex split. [PajO1]

£

start = he.prev.twin
the = start
do
the.vtx = newVtx
the = the.prev.twin // rotate CCW
while the != start

(= WY N U TC R SR

Listing 3.2: Updating the vertex after an edge collapse

3.1.3 Vertex Split

A valuable property of the directed edge structure is that the deactivated triangles of the collapsed halfedge and
its reverse twin halfedge are not altered. To perform a vertex split of a collapsed halfedge, we can therefore use
the halfedge entries of the two deactivated triangles to perform the necessary updates. The connectivity of the
triangles A and B in Figure 3.3 can be restored by

he.prev.twin.twin = he.prev 37)
he.next.twin.twin = he.next .

and for the triangles B and C

he.twin.next.twin.twin = he.twin.next 38)
he.twin.prev.twin.twin = he.twin.prev ’

As is the case for the edge collapse operation, a vertex split involves updating the vertex indices after the connec-
tivity has been reassigned. The updates involve rotating around the start-vertex of the restored halfedge he and
setting each halfedges vertex index to he.vtz. Additionally, the end-vertex he.next.vtx is restored by rotating
around he.next. The update procedure for the start-vertex is shown in Listing 3.3.

1 the = he.prev.twin

2 while the != he

3 the.vtx = he.vtx

4 the = the.prev.twin // rotate CCW
5 end

Listing 3.3: Reassigning the starting vertex after a vertex split

The two vertices vl = he.twin.prev.vtx and vr = he.prev.vtx (shown in Figure 3.3 are referred to as the cut
vertices for the vertex split of he [KLO1]. In the case of selective refinement, in which the vertex splits are not
carried out in the reverse order of the edge collapses, the vertices he.twin.prev.vtx and he.prev.vtx have to be
assigned the cut vertices in the current mesh, as the vertex indices of the surrounding halfedges may have been
altered by other operations while the edge was collapsed. The update can be done as follows

11
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he.prev.vtr = he.next.twin.vtx (3.9)
he.twin.prev.vtx = he.twin.next.twin.vtx .

3.1.4 Boundaries

We handle mesh boundaries y defining a specific value to be considered invalid (in our case, the constant
UINT32_MAX). In order to test if a given halfedge he lies on the mesh boundary, it is sufficient to test if its
twin halfedge he.twin is set to an invalid value. In order to accommodate for the possibility of invalid values,
some adjustments to the aforementioned functions have to be made.

Rotation around a vertex v starting from a given halfedge he has to consider that an invalid halfedge may be
encountered and then stop the rotation. If the rotation is incomplete, the procedure is subsequently carried out in
the opposite direction. The modified function including the two rotations to reassign the start vertex he.vtz after
a vertex split is shown in Listing 3.4. We adjust the function to assign a new vertex after an edge collapse in the
same manner.

1 the = he.prev.twin

2 while isValid(the) && the != he

3 the.vtx = he.vtx

4 the = the.prev.twin // rotate CCW
5 end

6
7 1f the == he

8 return // no boundary encountered
9

10 if !isValid(he.twin)
11 return // no rotation in CW direction possible

13 the = the.twin.next

14 while the != he

15 the.vtx = he.vtx // rotate CW
16 if !isvValid(the.twin)

17 return
18 the = the.twin.next
19 end

Listing 3.4: Setting a vertex with boundary test

We modify the edge collapse operation of halfedge he test that the halfedges for which the reverse twin is reas-
signed are valid. If he is itself a boundary edge, the reverse side cannot be updated. The modified procedure for
updating the connectivity is shown below in Listing 3.5.

The inverse vertex split operation is modified analogously by testing the validity of twin halfedges before assign-
ments are made.

3.1.5 Nonmanifold meshes

The directed edge structure is limited in regards to the representation of nonmanifold meshes.

Nonmanifold vertices The surface around nonmanifold vertices consists of multiple otherwise manifold
components that touch each other at exactly one vertex. Nonmanifold vertices can be represented without modifi-
cations to the structure; however, they do not form a connection between otherwise unconnected triangles. While

the halfedge connectivity remains consistent for all edges touching the vertex, the single point connection be-
tween the individual manifold components may be removed. When edge collapses do not involve repositioning
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if isValid (he.prev.twin)

1

2 he.prev.twin.twin = he.next.twin

3 if isValid(he.next.twin)

4 he.next.twin.twin = he.prev.twin

5

6 1f isValid (he.twin)

7 if isValid(he.twin.next.twin)

8 he.twin.next.twin.twin = he.twin.prev.twin
9 if isValid(he.twin.prev.twin)

10 he.twin.prev.twin.twin = he.twin.next.twin

Listing 3.5: Edge collapse with boundary conditions

(a) (b)

Figure 3.4: (a) Nonmanifold edge. (b) Nonmanifold vertex. [LRC*03]

of a vertex (i.e. halfedge collapse, see [PajO1], [PD04]), nonmanifold vertices present no further issue in regards
to the data structure. If the vertex is repositioned as a result of an edge collapse, the new position may be chosen
incorrectly in regards to the other components touching the vertex since the new position can only be chosen by
examining the triangles connected by edges.

We have chosen to handle the issue of nonmanifold vertices by using "virtual" vertex indices for triangles that
share a nonmanifold vertex v. Each connected group of triangles that share v and that is unconnected to any
triangle of another group is assigned a virtual index ©. As a result, the mesh no longer has any nonmanifold
vertices, and the individual groups have no connection in common. We maintain the list of virtual vertices in a
separate array that we can use to look up the original vertex v, which we can then use as an index into the vertex
buffer. When we need to modify the positions of the virtual vertices, we can convert them to "real" vertices by
increasing the size of the vertex buffer and copying their vertex data into the buffer.

Nonmanifold edges The directed edge structure provides no way to handle nonmanifold edges, which are
edges shared by more than two triangles. The connectivity cannot be represented in the structure, and thus, the
edges cannot be correctly traversed. In [CKS98] an approach to address this problem is presented that uses the
sign-bit of halfedge indices to indicate if an edge is nonmanifold. Negative indices represent nonmanifold edges.
By removing the sign-bit, the index points to a separate array that stores a list of connected halfedges. However,
the approach seems impractical when performing local mesh modifications and would likely require reordering
and reindexing of the array. We have thus chosen a more straightforward approach in our implementation by
converting nonmanifold edges to unconnected manifold edges during the construction of the structure, as ex-
plained in Section 3.1.6. The conversion of these edges generates nonmanifold vertices, which can be dealt with
as explained above.

3.1.6 Construction

We build the directed edge structure with an index buffer containing indices to vertices and one or more buffers
containing the data for each vertex (such as position and vertex normal) as input. During construction, we apply
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a set of checks and transformations to ensure that each triangle has unique vertices and produce a mesh with
manifold connectivity. As a result, the produced mesh may not be identical to the input mesh. The mesh may
contain multiple unconnected surfaces, and we do not attempt to connect those surfaces or split the mesh into
multiple meshes.

In order to find and connect each halfedges reverse twin halfedge, we sort a temporary array containing an
entry for each halfedge of the struct shown in Listing 3.6. The sorting comparator is chosen in such a way that
neighbouring halfedges will be adjacent in the sorted array. If the input data contains nonmanifold edges, those
will be adjacent before any potential twin halfedges. This allows us to easily detect nonmanifold edges and
handle them appropriately. After sorting, we iterate over the array and assign the twin connectivity in the array of
halfedges contained in the data structure.

1 struct SortEntry {
2 enum State { None, Reverse, Done };
3 uint32_t halfedge;

4 uint32_t vtxLow;

5 uint32_t vtxHigh;

6 State state;

7 };

Listing 3.6: Helper struct find connected halfedges.

The fields vt xLow and vt xHigh in Listing 3.6 are assigned the minimum and maximum values of the index of
each of the halfedges endpoints. The field state is used to specify the direction of the halfedge and is used to
track if a halfedge has already been assigned.

In order to detect nonmanifold vertices, we maintain a separate array of integers that tracks the number of
halfedges that have a particular vertex as their starting vertex. In the first iteration, over all of the halfedges,
the counter for each halfedges starting vertex is incremented. After connectivity has been assigned, we iterate
over all halfedges once more and check if their one-rings match the counter for the vertex. We maintain a flag to
avoid redundantly checking the same vertex more than once. If the counter and the size of the one-ring do not
match, the vertex is nonmanifold. We can then generate a new vertex ID and assign it to all connected halfedges
by rotating around the vertex.

3.1.7 Edges

A drawback of the directed edge structure is the lack of an explicit representation of edges. An edge is shared by
two connected halfedges or a single boundary halfedge. The structure provides no way to enumerate or access
edges in the mesh directly. For our purposes, we have found that a direct reference to edges is beneficial during
the mesh decimation phase to determine the cost and order of the edge collapses. We have thus augmented the
data structure to include directly accessible edge indices. By maintaining edge indices, we can avoid redundant
cost updates.

We have added edge references to the data structure by maintaining two additional arrays that allow the lookup
of an edge index given a halfedge index and vice versa. The edge-to-halfedge table only includes a reference to
one of the two halfedges of each edge. The other is accessible by looking up its reverse twin halfedge. The two
arrays add an additional requirement of 4 bytes per halfedge plus 4 bytes per edge. If the edge references are
only used during the preprocessing phase, the two buffers could be discarded thereafter and would not require any
memory during the run-time phase.

We update the edge references after each modification of the mesh. Following an edge collapse shown in Fig-
ure 3.5a, the edge of halfedge b is assigned to a and the edge d is assigned c. The original edges of a and c are
deactivated. The edge information for the two deactivated triangles remains unmodified in the process.
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Figure 3.5: Edge updates after an edge collapse. [Paj01]

After a vertex split, we apply the inverse operation by reassigning the original edges to a and c¢ as shown
Figure 3.5 b. The reassignment of an edge to a halfedge includes updating both lookup tables (edge-to-halfedge,
halfedge-to-edge) to ensure that both tables have valid entries.

3.2 Constraints

An edge collapse operation may potentially introduce inconsistencies or degeneracies into the mesh. In order to
avoid such undesirable transformations, several constraints have to be met for an operation to be considered valid.
We can differentiate between topological constraints, which preserve the overall topology of the mesh, and soft
constraints that improve the overall quality of the generated mesh.

3.2.1 Topological Constraints

Edge Collapse Constraints

To preserve the genus and overall manifold connectivity of the mesh, Hoppe et al. formulate three constraints for
edge collapse transformations [HDD193]. An edge collapse of edge (v1,v2) is topologically valid if and only if
the following criteria hold:

1. Boundary constraint: If v1 and vy are boundary vertices, then the edge (v, v2) has to be a boundary edge.

2. Intersection constraint: The intersection of the one-ring neighbourhoods of v; and vy consist of the vertices
opposite the edge (v1,v2) only. In other words, the intersection contains exactly two vertices in the case of
a non-boundary edge and exactly one vertex in the case of a boundary edge.

3. Empty constraint: The surface has more than 4 vertices if neither v nor vy are boundary vertices, or more
than 3 vertices if either v; or vy are boundary vertices.

Boundary constraint The collapse of two boundary vertices through a non-boundary edge leads to a non-
manifold vertex, as shown in Figure 3.6. For a halfedge he with vertices (v1,v2) to be collapsed, we check the
boundary constraint efficiently by examining the boundary flags of the two vertices and testing if the halfedges

reverse tWin he.lfwin iS Valid.
> M

Figure 3.6: Nonmanifold vertex generated as result of an edge collapse. [BKPT10]
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Intersection constraint Figure 3.7 shows the result of an edge collapse where the intersection constraint is
not met. The neighbourhoods of v; and v, share more than two vertices, leading to a nonmanifold edge created
due to the collapse.

In order to test for the intersection constraint, we can choose one of two approaches:

1. We rotate around v; and vy and add the one-ring vertices of both into an array. We subsequently sort the
array and check if the array contains duplicate entries.

2. Another approach requires that we have to keep an array of binary flags, which we can manipulate for each
vertex in the mesh. We rotate around v; and set the flag for each one-ring vertex to true. We then rotate
around v and check if any of its vertices have been set to true. If a duplicate vertex is not one of the
opposite vertices of the edge (v1, v2) the constraint is violated. We then need to perform a third rotation
around v; and reset the flags.

In our implementation, we tested both approaches and found no significant difference in speed between the two.

, / ew
Vo

Figure 3.7: Nonmanifold edge generated as result of an edge collapse. [LRC*03]

y

Empty constraint The third constraint, which we refer to as the emtpy constraint prevents single unconnected
triangles and triangles folded onto each other from being eliminated by an edge collapse. We can test for the
constraint as shown Listing 3.7.

1 if (he.twin && he.prev.vertex == he.twin.prev.vertex) return false;
2 if (he.twin && he.twin.next.boundary && he.twin.prev.boundary) return false;
3 if (he.next.boundary && he.prev.boundary) return false;

Listing 3.7: Testing for the empty constraint.

Vertex Split Constraints

A vertex split transformation is always legal, as it can never change the topological type of a mesh [HDD'93].
However, Kim et al.[KLO1] note in the context of selective refinement, that when the two cut vertices vl and vr
(illustrated in Figure 3.4) are the same, a degenerate case may occur. If we enforce the vertex split, in this case,
the resulting mesh will not be simply connected.

3.2.2 Soft Constraints

An edge collapse can cause undesirable effects, even when the collapse is topologically valid. To address such
problems, we have implemented additional checks to evaluate a proposed edge collapse. We can either add
a penalty factor or disallow the transformation entirely when failing one of these checks. If undesirable edge
collapses are only penalized, they may be still be performed if all other transformations have significant penalties.
It does ensure, however, that that the algorithm can still progress even when all contractions are considered "bad"
[Gar99].
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Triangle flips One such unwanted side effect are mesh foldovers [XESV97] or triangle flips, in which the
mesh gets a folded crease. In Figure 3.8 the collapse of the edge (v, vp) to the vertex vyey causes a foldover
due to the new triangle (vg, V¢, Vnew ). A popular way to detect this is to measure the change in normals of the
corresponding triangles before and after the edge collapse. A mesh foldover happens when the angle between the
normals is greater than a user-defined threshold.

We have chosen to also implement the approach described by Garland [Gar99] to detect foldovers. For every
triangle around v,, excluding the two triangles shared with vy, there is an edge opposite v,. By placing a plane
through the edge, perpendicular to the triangle, the position of vy,ey ) must lie on the same side of the plane as the
vertex v,. The same applies to the triangles surrounding v,. We have implemented this check by comparing the
two dot-products of (v, — vy) and (vpew — vp) with the normal of the plane. If the second product is smaller than
the first product multiplied by some factor, the triangle is considered to be flipped.

, | Edge collapse
/ Lol
vy Q’ Vd

Figure 3.8: An edge collpase which causes a mesh foldover. [LRCT03]

Sliver Triangles Another potentially unwanted side effect of edge collapses is the generation of sliver trian-
gles. These are skinny triangles with an interior angle close to 0. Slivers are not usually a problem in rendering.
However, they can pose problems for some algorithms, such as finite element analysis, and can lead to instabilities
in numerical simulations [BPK™08]. We can quantify the compactness of a triangle with area a and lengths of
the three sides [y, /1, and [y with the following formula as proposed by Guéziec [Gué96]:

4v/3a

= 3.10
G+15+13 G-10

v

A compactness of 1 corresponds to an equilateral triangle and O to a triangle whose vertices are colinear. We can
penalize or discard edge collapses whose compactness fall below some threshold.

3.3 Decimation Algorithm

The decimation algorithm performs repeated edge collapses until no further collapses are possible or until a
stopping criterion is reached. Each halfedge is initially assigned a cost that is incurred by its collapse. The cost
of an edge collapse operation quantifies the change it would cause to the mesh. Hence it is also referred to as
the error associated with the operation. Starting with an initial high detail mesh, the operation with the least cost
(that is valid) is applied to the current mesh. Collapsing an edge may cause the cost of neighbouring halfedges to
change. The costs of the affected neighbours thus have to be reevaluated after each step. In order to maintain the
order of the operations after cost updates, the candidate halfedges are kept in a priority queue.

Before applying an edge collapse, we test the topological and other constraints of the collapse, as discussed in
Section 3.2. If the edge collapse is not considered to be valid, we assign a maximum cost value to it and update
its position in the queue. The halfedge is not be removed from the queue since the violation of constraints may
be temporary. If the halfedges neighbourhood changes as a result of another edge collapse, its cost will get
reevaluated. When it reaches the top of the queue again, its validity will be tested anew.

17



3 Technical solution

When the top element in the queue has the maximum cost value associated with it, the end of the procedure is
reached since all other remaining elements will also have maximum cost. This, in turn, means that all remaining
candidates are invalid and cannot be collapsed. Algorithm 1 shows the pseudocode of the decimation procedure.

Algorithm 1: Decimation algorithm

Input: original mesh M = M, stopping criterion stop
Output: coarse mesh M°
P < empty priority queue
foreach halfedge he in M do
cost <— compute collapse cost of he
Insert(he, cost) in P

while P not empty and stop not reached do
he < top element of P
if he is removed then

L Remove (he) from P

else if he has maximum cost then
| return;

else if collapse if he is not valid then

cost < maximum cost
| Update(he, cost) in P

else

Apply edge collapse of he on M

Remove he from P

foreach halfedge he; affected by the collapse do
cost <— compute collapse cost of he;
Update(he;, cost) in P

Edge entries As discussed in Section 3.1.7, we augmented the directed edge data structure to include direct
edge references. This allows us to use edge indices instead of halfedges as entries in the queue. We can thereby
reduce the size of the queue as well as the number of updates required. In this setup, two opposite halfedges share
a single cost entry. In the case of a halfedge collapse, however, the cost of collapsing one halfedge is not the same
as the cost of collapsing its reverse twin halfedge. We can solve this problem by evaluating the edge collapse cost
in such a way that the lower of the two costs returned. Additionally, we store which of the two halfedges has the
lower cost.

This distinction is only necessary for certain types of edge collapses. More specifically, it depends on how
the new vertex is placed after an edge collapse. If a vertex is placed at the midpoint of an edge, for example,
the collapse cost will be the same for both halfedges. We designed the Cost and Vertex Placement modules as
separate entities that are passed to the decimating module as C++ template parameters. This means that we can
evaluate at compile if two separate cost evaluations are needed. Even in the case of the halfedge collapse, which
requires two cost evaluations, the use of edge references is advantageous because fewer updates to the queue are
needed.

Heap We implemented the priority queue as a binary heap data structure. For each edge, we maintain a handle
to its corresponding heap position in the heap. For every update to the heap, the handle is updated to point to the
correct location. We can thereby update the cost of an edge without having to first remove it.
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3.3.1 Lazy Cost Evaluation

A variant of the decimation procedure is presented in [Coh99]. In order to reduce computation time, the algorithm
performs lazy evaluation of edge costs. After an edge collapse, the costs of the affected edges are not recomputed.
Instead, the edges are marked as dirty by setting a flag. When a dirty edge appears at the top of the queue, its cost
is recalculated, the edge is marked as clean and reinserted into the queue. The approach ensures that if the cost of
an edge has increased as a result of an edge collapse, it will not be applied before its cost has been recomputed.
On the other hand, if the collapse cost has decreased as a result of an edge collapse, it will go unnoticed.

We adapted this approach to our implementation by making a slight adjustment: Some edges in the queue
can at any have a maximum cost value assigned, which means that they could not legally be collapsed, the last
time they were checked. When such an edge is affected by an edge collapse, we always update its cost. Since
we are using edges instead of halfedges for the queuing, we also have to update the edges of the removed trian-
gles, i.e., the edges he.next.twin.edge (=he.prev.twin.edge) and he.twin.prev.twin.edge
(=he.twin.next.twin.edge).

3.3.2 Independent Sets

The independent sets approach [DFMP97] [ XESV97] is motivated by the desire to build flat vertex hierarchies for
view-dependent refinement. The algorithm performs a maximal set of independent operations, .i.e., operations
whose neighbourhoods do not overlap. Hierarchies are thereby built one level at a time. The independence
criterion can formulated as follows: [PROO]

¢ For each edge e; = (v1,v2) that will be collapsed and any edge e2 = (w1, ws) forming a quadrilateral
(v1, v2, w1, wy) with ey, e; and ey cannot be collapsed in the same batch

Since neighbouring halfedges cannot be collapsed in the same batch, there is no need to maintain a dynamic
queue. The cost values can be maintained in an array and recomputed once in each batch. The array is sorted at
the beginning of each batch.

We have implemented the approach as follows: After an edge collapse, we flag the four vertices belonging
to the two removed triangles as locked. When iterating over the sorted array, we test if any of the four triangle
vertices of the candidate halfedge are locked and if so, we move on to the entry.

3.4 Cost and Error Metrics

The cost and error metrics are what determine the ordering of edge collapse operations in the decimation algorithm
and thereby determine the quality of the resulting simplification. We implemented the cost functions used in the
decimation algorithm as independent modules. A cost module is passed to the decimation algorithm as a templated
instance, which enables function inlining and certain compile-time optimizations, as discussed in Section 3.3

The most basic cost function is the edge length cost, which simply returns the length of the candidate edge as a
cost value.

In the following, we discuss our implementation of Quadric Error Metric.

3.4.1 Quadric Error Metric

Every vertex can be seen as an intersection of the planes of its adjacent triangles. Garland [Gar99] defines a
quadric @ as a triple @ = (A;b;c). A is a 3x3 matrix, b is a 3-vector, and c is a scalar. The quadric error Q(v)
for every point in space v is given by the second order equation

Q) =vIAv+ 27 + ¢ (3.1D)

In order to compute the sum of squared distances to a set of planes, only one Quadric is needed. It can be
computed as the sum of the quadrics of each plane.
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We have implemented the metric by making use of the fact that the matrix A is symmetric. We thus only need
to store six floating-point variables for A or ten variables for the whole Quadric (). We store three separate arrays
for the triangles, edges, vertices in the mesh, which we initialize to zero. During initialization, we proceed as
follows:

1. We calculate and store the quadric for each triangle in the mesh. Given a triangles normal n, and its centroid
v. the quadric is initialized as follows:

a) A =nn"
b) b = —Avy,

c) c=—vb
2. The quadric of every triangle is added to the quadric of each of its three verices.

3. For each edge, the quadrics of its two vertices are added. Additionally, the quadrics for the two triangles
adjacent to the edge are subtracted since they are included in both vertex quadrics.

To evaluate the error or cost of an edge collapse of a half-edge he to a new vertex vyeyw, we lookup its edge quadric
@ and calculate the error Q(vnew) given by the equation 3.11.

After an edge collapse to a new vertex vnew, We update the quadrics of the affected triangles, vertices, and edges
as follows:

1. Reset the quadric for the target vertex vpey to zero.

2. The quadrics of each triangle incident to the target vertex are recalculated as outlined above. The resulting
Quadric is added to the quadrics of each of the triangles the vertices while subtracting the previous Quadric
of the triangle.

3. The quadrics of the two deactivated triangles are subtracted from the vertex quadrics of their vertices.
4. Finally, the quadrics of all affected edges are recalculated as above.

To achieve invariance of the specific triangulation of a given surface, Garland suggests weighting the triangle
quadrics by each triangles area [Gar99]. We achieve this by scaling the triangle quadrics by the area of the
triangles when adding them to the vertex quadrics.

In order to preserve the boundaries of a mesh, Garland and Heckbert place perpendicular planes running
through the boundary edges of the mesh [GH97]. These constraint planes are then converted into quadrics,
weighted by a significant penalty factor and added into the initial vertex quadrics for the edge’s endpoints. Since
the number of boundary edges is typically much smaller than the number of non-boundary edges, we have imple-
mented the boundary quadrics using a hash table with the edge index as keys. We sum the boundary quadrics by
rotating around boundary vertices and add the boundary quadrics for each boundary edge.

3.5 Vertex Placement

An edge collapse can be performed with different vertex placement strategies. In order to enable parameterization,
we implemented the vertex placement strategy as separate modules. The vertex placement modules are passed as
template parameters to a cost module. During decimation, the cost evaluation can be based on the position of the
vertex that would get generated as a result of the collapse.

We handle the generation of new vertices differently, depending on whether the operations need to be invertible.
If the decimation algorithm is used directly, then new vertices can be stored in place of the end-vertex of the
collapsed halfedge. When the refiner components are used, operations need to be invertible, and the collapsed
vertices need to remain accessible. For this purpose, we allocate an additional vertex buffer inside the mesh data
structure to store the generated vertices. We handle the special case of the halfedge collapse differently. Since the
edges collapse to one of their endpoints, a separate vertex buffer is not needed.
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Halfedge collapse A simple but effective strategy is endpoint placement or halfedge collapse, where the
newly placed vertex coincides with one of the endpoints of an edge or the end-vertex of a halfedge. It has the nice
property that it is invertible without requiring extra storage.

Midpoint placement Another straightforward strategy creates the vertex at the midpoint of the edge. Mid-
point placement, however, leads to a loss in volume in the model, and it has been shown that endpoint placement
strategies can better preserve the features of the original model [LT99].

Quadric optimal placement Quadric optimal placement computes the target position of vertex so as to
minimize its quadric error. We can obtain the target vertex by solving.

y=—A"1' (3.12)

If the matrix is not invertible, we test the endpoints of the edge and return the position that has the smallest error.
The optimal placement module requires the Quadric cost module.

3.6 Progressive Refinement

By recording the index of the halfedge that gets collapsed at each step in a decimation process, we obtain an array
of all the operations performed. We can use this list to transform the mesh from one level of detail to another. We
iterate over the array and successively apply each operation until we reach a target. The array can be traversed in
either direction, and, depending on the direction, the operations are applied as edge collapses or vertex splits.

As detailed in Section 3.1.3, we store all the connectivity information required to perform a vertex split as part
of the directed edge structure. There is, therefore, no additional storage needed to enable the transformation.

As pointed out in Section 3.5 however, depending on the configured vertex placement strategy, a separate vertex
may need to be allocated.

3.7 Selective Refinement

As discussed in Section 2.4 a linear list of operations is not sufficient to enable selective refinement of a mesh
because there exist dependencies between the individual operations. We thus need a way to model these depen-
dencies. We have based our approach on the halfedge collapse hierarchy for view-dependent refinement described
in [PajO1] and [PDO04].:

In order to create a more general implementation that could be used for other applications, we separated the
view-dependent parameters and tests from the core functionality. We implemented a separate view-dependent
refiner that utilizes the general selective refiner.

3.7.1 Halfedge Collapse Hierarchy

The halfedge collapse hierarchy is a forest of binary trees where each node can be seen to represent a halfedge.
Each node in the hierarchy contains a link to its parent, its left and right children and an index to a halfedge. A
node can be seen as being collapsed or expanded depending on the state of its halfedge.

A node ¢ in the hierarchy can be collapsed if:

* none of its descendants have to be collapsed first

* the collapse is topologically correct
A node ¢ in the hierarchy can be split if:

* all of its ancestors have been split
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* all four halfedges h.prev.twin, h.next.twin, h.twin.next.twin and h.twin.prev.twin are currently active in the
mesh

A front through the hierarchy defines a particular level-of-detail mesh. The nodes on the front are called active
nodes. A node ¢ is defined to be active if and only if the following two properties hold:

1. ¢ is not collapsed, and its child nodes are either collapsed or do not exist

2. t1is collapsed, its parent is not collapsed, and its sibling exists and is not collapsed

3.7.2 Construction
We construct the hierarchy by decimating a mesh using the approach described in Section 3.3.

In order to obtain a direct relationship between the vertices and the nodes in the hierarchy, we number the vertices
that get generated in the decimation process in increasing order. If the original model has n vertices with indices
0,1,...,n —1, the first vertex generated will have index n. Each new vertex will have an index of one more than
the previous vertex. We store the nodes in the hierarchy in a contiguous array.

Using this numbering, we can access a node given a vertex index as follows:

1 function vertexToNode (int vertex) ({
2 return vertex >= numVertices ? node[vertex - numVertices] : NULL;

3}

After each edge collapse in the decimation process, we add a new node to the end of the array and set the child
links as follows:

node.left = vertexToNode (halfedge.vertex)

1
2 if (node.left) node.left.parent = node
3
4 node.right = vertexToNode (halfedge.endVertex)
5 if (node.right) node.right.parent = node
3.7.3 Front

We implemented the front as a doubly-linked list. Each front node contains links to the previous and next node,
as well as a link to a hierarchy node. The hierarchy will at any time have no more active nodes than there are leaf
nodes in the hierarchy. We can thus preallocate an array of said length and initially set each node in the array to
reference the next. In essence, we maintain two lists, the front nodes that are currently in use and the nodes that
aren’t. When a front node gets activated or deactivated, we remove it from one list and add it to the other, setting
the previous and next links.

After parent-child links in the hierarchy have been established, we add all root nodes of the hierarchy to the front
list.

3.7.4 Refinement

The refinement procedure iterates over the front and tests for each node if it should be split or collapsed. Vertex
splits are performed as forced splits to ensure that the conditions for vertex splits described in Section 3.7.1 are
met. If the required faces are not active in the mesh, the corresponding nodes are recursively force-split until the
required configuration is achieved.
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The edge collapse operations have to adhere to the topology constraints described in Section 3.2.1. We found that
during view-dependent simplification, groups of nodes could fail to collapse due to topological constraints not
being met. Figure 3.9 illustrates such a case. The horse model shows that groups of triangles are at a much higher
detail level than the surrounding triangles. We were able to solve the issue by repeatedly performing additional
vertex splits on those nodes that caused the intersection constraint to fail.

Another approach we took was to completely ignore the intersection constraint. This required that we handled
the special cases in the mesh data structure itself in order to avoid generating holes in the mesh. We found that as
long as the vertex splits and edge collapses were the exact inverses of each other, the refinement would continue
working without problems. The resulting mesh may at times have nonmanifold edges but visually it does not
exhibit any unexpected differences. We found, however, that this only works in the confines of the hierarchy
during the run-time phase. When ignoring the topology constraints in the decimation phase, the hierarchy cannot
correctly be built.

Figure 3.9: Regions of nodes failing to collapse .

3.7.5 Tree Balancing

We implemented two different approaches that aim to create more balanced hierarchies by modifying the cost
term during mesh decimation.

In [Hop97] the cost metric of an edge collapse is modified by adding a small penalty factor. The penalty for the
edge collapse ecol (vy, vy,) is ¢(ny, + ny,, ). Where n,, is the number of descendants of v and ¢ is a user-specified
parameter. In [Gra(02] a large penalty factor is described to reduce the number of hierarchies.
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4 Implementation

In the following, we outline the most important aspects of the implementation of our library Pmesh and introduce
the different components of the library. The library is implemented in C++ and requires a compiler with C++ 17
support. We have tested the library on Ubuntu Linux 21 with GCC 10.3 and Clang 12.0 compilers. On Windows,
we used the Microsoft Visual Studio 2019 compiler, and on Mac, we tested with XCode 13 using the Apple
version of the Clang compiler. The library is implemented without any external dependencies apart from the C++
Standard Library and is therefore easy to build and integrate. A CMake file for integration into other builds is
provided. The library does not contain any file I/O functionality and, therefore, has to be paired with another
solution to read and write meshes from 3D model files.

We use C++ class templates to enable parametrization of the functionality provided by the library. Custom mod-
ules can be used in conjunction with other components by implementing a predefined functional interface for
certain module types. We decided on using templates instead of virtual interfaces mainly because we wanted to
avoid the additional overhead associated with virtual functions and allow for certain types of compiler optimiza-
tions, such as function inlining. Templates are used only where needed to achieve low-level composability or to
enable certain optimizations. However, the use of templates should not get in the way of using the library when no
customized modules are required. Even though the library uses templates, the compilation times seem reasonable.
Since much of the functionality is implemented inside of header files, it may be helpful to limit the inclusion of
headers to a single C++ source file when using the library.

The library consists of the following main components:
* The halfedge-based Mesh class represents the mesh on which the other components operate.
* The Decimator module iteratively decimates a mesh by applying a series of edge collapses.
* A Cost module assigns a cost value to each possible edge collapse.

* The Constraints module checks for the validity of an edge collapse operation and can optionally pe-
nalize an operation by modifying its value.

* The VertexPlacement module defines where a new vertex will be placed as a result of an edge collapse.

* The Linear Refiner module records the edge collapses of a Decimator and successively allows to transform
a mesh between various levels of detail at run-time.

* The SelectiveRefiner module builds an edge collapse hierarchy of recorded edge collapses and im-
plements functionality to refine a mesh at run-time selectively.

* The ViewRefiner module uses the functionality provided by the Selective Refiner to provide view-
dependent refinement of mesh.

The Mesh, Decimator, LinearRefiner SelectiveRefiner and ViewRefiner can output statistics
of their operations to a separate structure, which can optionally be passed as a pointer when initializing the
structures. Each of the Refiner modules can generate their output using the same functions as explained for the
Mesh module in Section 4.1.1.

To aid in the development and testing of the library we also developed a viewer application and command-line
tool, which are described in Sections 4.2 and 4.3.
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4.1 Library Components
4.1.1 Mesh Class

The Mesh class stores the data of a mesh and provides functionality to query and manipulate the mesh structure.
It is based on the directed edge data structure and forms the common basis for the other components.

Mesh Input And Output

In order to initialize the Mesh structure, the user is expected to provide an index buffer in the form of an indexed
triangle list and one or multiple buffers containing the vertex data (such as position and vertex normal). The input,
therefore, closely resembles the buffers used in exchange with 3D graphics APIs such as OpenGL or DirectX.
The data types used in the buffers and the layout of the vertex data have to be described with additional helper
structures. We intentionally chose not to explicitly store the vertex positions and normals in dedicated arrays to
allow more flexibility and avoid unnecessary duplication and copying of data. By default, the Mesh class does
not copy the vertex data and only references it. By specifying a flag during initialization or by calling the function
makeCopyOfVertexInputData after initialization, the Mesh can be asked to copy the data and maintain
ownership of the copy. Listing 4.1 shows a C++ code sample of how the Mesh structure can be initialized.

pm: :VertexAccess vtxInput;

1

2 pm: :IndexData idxInput;

3

4 // describe the layout of the vertex data

5 vtxInput.m_layout.m_position.m_type = pm: :VertexAttributeType: :Float3;
6 vtxInput.m_layout.m_position.m_offset = posOffsetInBytes;

7 vtxInput.m_layout.m_position.m_stream = 0;

8 vtxInput.m_layout.m _normal.m_type = pm: :VertexAttributeType: :Float3;
9 vtxInput.m_layout.m_normal.m_offset = normalOffsetInBytes;

10 vtxInput.m_layout.m_normal.m_ stream = 0;

12 // set the pointer, size and stride of the vertex data

13 vtxInput.m_data.m numVertices = numVertices;
14 vtxInput.m_data.m_numStreams = 1;
15 vtxInput.m_data.m _stream[0] .m_data = (uint8_tx)vertexDataPointer;

16 vtxInput.m_data.m_stream[0].m _stride = vertexStrideInBytes;

18 // describe the index data

19 idxInput.m_data = indexDataPointer;

20 idxInput.m_numIndices numIndices;

21 idxInput.m_indexBufferType = IndexBufferType::Uintl6;

23 // initialize the mesh
24 pm: :Mesh mesh;
25 mesh.initialize (idxInput, vtxInput);

Listing 4.1: Initialization of the Mesh structure.

At any point, after any number of edge collapse or vertex split operations, have been performed, the Mesh can
generate output buffers with the same layout as specified during initialization. The user is expected to provide
preallocated buffers of sufficient size. The required buffer sizes can be queried beforehand.

HalfEdgelterator

A central element to our implementation of the Mesh class is the concept of iterators. The Hal fEdgeIterator
consists of a pointer to a Mesh and an index to a halfedge of that mesh. It provides most of the functionality needed
to navigate around the mesh and access the data stored in vertices (e.g. enumerating one-ring vertices, accessing
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neighbouring halfedges or calculating the normal of the triangle a halfedge belongs to). The iterator is defined so
that multiple calls can be chained together, each returning a HalfEdgelterator. If a halfedge does not exist because
of a mesh boundary, an invalid iterator is returned. For example, rotating one step around the starting vertex in
either direction can be done as follows:

HalfEdgeIterator hel prev () .twin () ; // CCW

twin() .nextIf(); // CW

HalfEdgeIterator he2

In addition to the HalfEdgelterator, an Edgelterator is also provided. The functionality of the Edgelterator is, in
essence, limited to returning a HalfEdgelterator. Its primary use is to provide a single index to a pair of halfedges
or one boundary halfedge.

Mesh Modification

Both structural iterator types only maintain a const reference to the mesh. Thus, to manipulate the mesh in
any way, the functions provided in the Mesh class have to be used. The functions edgeCollapse and
vertexSplit take a HalfEdgelterator as parameter. The edge collapse function optionally takes a new ver-
tex index as input. Otherwise, an edge will be collapsed to the end-vertex of the halfedge. Both functions do not
perform any checks on the topological validity of the operation, and it is the responsibility of the user to perform
the required checks. The function checkCollapseTopologicalConstraints may be used to test if an
edge collapse is legal before executing it. The edge collapse function is designed not to fail if topological con-
straints are not met and can be undone in any case by applying its inverse vertex split operation. The vertex split
function requires that the halfedges prev.twin, next.twin, twin.next.twin, twin.prev.twin are
active, if they exist in the mesh. The functions set Twin and setRemoved allow modification of the mesh
structure at a lower level. The data of a vertex can be modified using a VertexIterator. The vertex providers
allow setting the position or normal of a vertex or access the raw data.

4.1.2 Decimator

The Decimator module performs iterative edge collapses on a given Mesh instance and can optionally be passed
DecimatorInterface class as a template argument, which can record or react to the applied edge collapses.
The order in which edge collapses are performed is determined by a cost module referenced by the template
parameter TCost. A constraints module, referenced by the template parameter TConstraints determines
if an edge collapse is legal and can optionally penalize certain edge collapses by modifying their assigned cost.
Both modules, along with a Mesh instance, are passed to the Decimators constructor. The decimate function
executes the decimation process, taking an optional DecimationOptions struct as a parameter. The options
for the decimation process are as follows:

* lazyEvaluateCost specifies that the cost values in the priority queue are updated lazily, thereby im-
proving the running time of the algorithm at the expense of losing some accuracy.

* newVertexReplacesEndVertexData specifies that the data of newly collapsed vertices is written
in place of existing ones. If this option is not activated, a separate buffer for the generated vertices will be
allocated. The mesh has ownership over the buffer.

* newVertexGetsNewIndex controls whether generated vertices are numbered using a new sequential
index or if they are assigned the index of the end-vertex of the collapsed halfedge.

* independent Sets specifies if the decimation process is performed using batches of largest independent
sets of edge collapses, the algorithm uses array sorting instead of a priority queue based approach.

* In case the independent sets option is specified, the batchSizeRatio defines how many edges can be
collapsed in one batch.
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* TheminTriangles option is given as a stopping criterion for the decimation process.

By default, the independent sets algorithm uses the C++ Standard Library std: :execution: :par_unseq
policy to sort the array of cost values. This functionality was not available on the Mac during our testing and is
therefore disabled on Apple platforms. The optional precompiler switch PM_ENABLE_EXEC_PAR can be used
to override the default behaviour.

An instance of a class that wishes to react to the decimation process is passed to a Decimators constructor, denoted
by the template parameter TInterface. The class has to implement the following function, which is called each
time an edge collapse has occurred.

1 template <EdgeCollapseKind kCollapseKind>
2 void decimatorCollapse (HalfEdgelIterator he, uint32\_t mergelIndex, double cost);

The parameter he specifies the collapsed halfedge, mergeIndex is the index of the edge collapse and cost
represents the assigned cost value. The template kCollapseKind specifies if the edge collapse is a full edge
collapse or a halfedge collapse and will be the same for each successive call of the function.

4.1.3 Vertex Placement Module

The Vertex Placement and Cost modules are closely linked. The Vertex Placement module defines where a new
vertex will be placed after an edge collapse. By default, it is provided as a template parameter to a Cost module.
The Decimator only interfaces with the Cost module and contains no reference to the Vertex Placement module.
An implementation of a custom Cost Module may therefore choose not to use a separate Vertex Placement module
and implement all functionality inside the Cost class. In order to work with the provided Cost modules, a Vertex
Placement class has to contain the function and constexpr statements shown in Listing 4.2.

struct VertexPlacementInterface

{
static constexpr EdgeCollapseKind kCollapseKind = EdgeCollapseKind::FullEdge;
static constexpr bool kDependsOnEdgeDirection = false;

template <typename TFloat>
Vec3T<TFloat> getCollapsePosition (HalfEdgelIterator he);

1
2
3
4
5
6
7
8 };

Listing 4.2: Interface of the Vertex Placement module.

The statement kDependsOnEdgeDirection indicates if the placement of vertex is different depending on

the direction of the collapsed halfedge. It is used to optimize the common case, where the position is the same in

either direction. kCollapseKind is similarly used for compile-time optimization in case of a halfedge collapse.

The parameter should never be set to true except in the already provided VertexPlacementEnd module.
The library contains the following Vertex Placement modules:

* VertexPlacementEnd represents the special case of a halfedge collapse, which places the new vertex
to coincide with the end-vertex of the collapsed halfedge. In contrast to other vertex placement strategies,
no new vertex has to be created. Consequently, the additional storage requirement for new vertices can be
avoided in the Refiner modules.

* VetexPlacementMidpoint places the new vertex at the midpoint of an edges vertice.

* VertexPlacementLerp linearly interpolates between the two edge endpoints, according to a user-
specified parameter.
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* VertexPlacementQuadricOptimal places the vertex at the position where the Quadric error is min-
imized and can only be used in conjunction with a Quadrics cost module. The module does not implement
any functionality. Instead, the Quadrics cost module computes and returns the optimal position if this
module is passed as a template parameter.

4.1.4 Cost Module

Cost modules are used by a Decimator to assign a cost to each possible edge collapse. An implementation of a
Cost class has to provide the interface shown in Listing 4.3.

1 struct CostInterface

2 {

3 static constexpr EdgeCollapseKind kCollapseKind = VertexPlacementT::kCollapseKind;

4 static constexpr bool kDependsOnEdgeDirection = VertexPlacementT::
kDependsOnEdgeDirection;

5
6 template <typename TFloat = float>

7 Vec3T<TFloat> getCollapsePosition (HalfEdgelIterator he);
8

9

double getCollapseCost (HalfEdgeIterator he);
10 void edgeHasCollapsed (HalfEdgeIterator he);
11 void initialize (Mesh& mesh) ;
12 void release () ;

Listing 4.3: Interface of the Cost module.

The kCollapseKind and kDependsOnEdgeDirection statements as well as the getCollapse
Position function are typically provided by a Vertex Placement module, can however be defined in the Cost

module itself.

The getCollapseCost function provides the main functionality of this module and returns a cost value given
a halfedge. The other three functions can be empty but may be needed if the module maintains separate data struc-
tures. edgeHasCollapsed is called whenever an edge collapse has occurred. The function initialize is
called before the decimation begins, and release is intended to free any allocated resources after the decimation
process has ended.

The cost modules CostShortestEdge and CostQuadrics are provided as part of the library. The shortest
edge cost module simply returns the edge length as a cost value. The CostQuadrics module implements the
Quadric Error Metric. It can be configured with the following options:

* recalculateVertexQuadrics specifies if the vertex Quadrics will be fully recalculated after each
edge collapse. This is more expensive but provides some additional accuracy.

* When areaWeighted is set, each triangle is weighted by its area.

* constrainBoundaries specifies if the Quadric of a perpendicular plane is added to each boundary
edge in order to preserve mesh boundaries better.

* boundaryWeight specifies the weighting of the boundary planes.

4.1.5 Constraints Module

The Constraints module is used by the Decimator module and has two main purposes:
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Determine if an edge collapse is legal. This typically involves testing the topological constraints of an
edge collapse. It may also be used to formulate additional constraints where an edge collapse should be
disallowed.

2. Penalize certain contractions by modifying their cost value.

An implementation of a Constraints module has to provide the two functions shown in Listing 4.4.

1
2
3
4
5
6
7

8

}i

struct ConstraintsInterface

template <typename TCost>
double applyPenalties (HalfEdgeIlterator he, double collapseCost, TCost& costs);

template <typename TCost>
AllowCollapse allowCollapse (Mesh& mesh, HalfEdgelIterator he, TCost& costs, std::vector
<uint32_t>& scratchBuffer);

Listing 4.4: Interface of the Constraints module.

The applyPenalties function takes a cost value as input and returns a modified cost value. This is the
actual value that the Decimator will use to determine the order in which it performs edge collapses. The
allowCollapse function returns an enumeration type taking one of the three possible values:

1.

2.

Yes: The edge collapse is legal and can be applied in the current mesh.

No: The edge collapse is not legal in the current configuration but may become legal when the neighbour-
hood of the edge changes.

. Never: The edge collapse is never allowed. The Decimator will remove this edge from the queue, and it

will not be retested.

The provided default implementation of the Constraints module includes a number of different tests to be per-
formed, and which can be configured by modifying the options field of type ConstraintsOptions. The
penalties applied by the different constraints can be specified by two parameters that scale the cost value of an
edge collapse or add a constant bias. The following tests are part of the default Constraints module:

The topological constraints include the three topological constraints associated with an edge collapse.
Options to disable each constraint are provided, but doing so is not supported in conjunction with the
SelectiveRefiner module and will lead to undefined behaviour.

Testing for triangle flips can be configured to either compare the normal deviation or to use the perpendic-
ular plane approach.

The test for sliver triangles can be configured with a threshold parameter

The contraction boundary vertices and boundary edges can be penalized separately.

We have found that in order to implement additional constraints, it can be helpful to wrap the default Con-
straints module inside a new struct with the required signatures and calling the functions applyPenalties
and allowCollapse of the default implementation from inside the new module. This approach is used in the
SelectiveRefiner to add cost penalties that help balance the trees that form the edge collapse hierarchy.
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4.1.6 Linear Refiner

The LinearRefiner records a set of edge collapses of a Decimat or and then allows runtime-transformation
of the mesh by applying the operations as vertex split or edge collapses to increase or decrease the level of detail
of the mesh. Initialization of the LinearRefiner is done similarly to the Decimator module. The Decimator is
instantiated from within the initialize function of the module and does not have to be provided separately.
In addition to the DecimationOptions an option to update the vertex normals at runtime can be set. After
initialization the desired level of detail can specified by using the functions refineToMaxTriangleCount
and refineToTriangleRatio.

4.1.7 Selective Refiner

The SelectiveRefiner enables selective refinement of a mesh at runtime by building an edge collapse
hierarchy and providing the functionality to perform edge collapses and vertex splits given the constraints of the
hierarchy. It is intended to be used either as a base class or in conjunction with another class that specifies the
criteria on how the mesh should be refined.

The edge collapse hierarchy is implemented in the separate CollapseHierarchy data structure. It is com-
posed of two the two data structures Tree and Front. The Tree structure stores and maintains the forest of
binary trees of edge collapses. A TreeIterator is used to access and traverse the individual tree nodes in
the structure. The Front structure maintains the front of active nodes in the hierarchy. The FrontIterator
structure is used to access the list nodes of the front and to retrieve the TreeIterator it references.

The SelectiveRefiner class has one template argument TInter face which implements two functions as shown
Listing 4.5.

class SelectiveRefinerInterface

{

bool shouldRefine (CollapseHierarchy::Treelterator node);

template <EdgeCollapseKind kCollapseKind>
void nodeAdded (CollapseHierarchy::Treelterator node, HalfEdgelterator
collapsedHalfEdge) ;

1
2
3
4
5
6

7 )i

Listing 4.5: Interface for the Selective Refiner.

The function nodeAdded is called during initialization of the structure, whenever a new node is added to
the hierarchy. It gives the implementing class the possibility to build and prepare its own data. The function
shouldRefine is repeatedly called during selective refinement and determines if a node should be collapsed
or split. Selective refinement is initiated by calling the function re f i ne which traverses the front of active nodes
and refines the mesh according to the result of shouldRefine.

The implementing class is not restricted to refine the mesh in the context of the refine function and may
choose a different approach to refine the mesh. A subset of the functions which the implementing class may call
are the following:

* forceSplitNode splits a node by performing other vertex splits necessary. The function returns false
if a node fails to split. The node passed to the function has to be splittable given the current state of the
hierarchy. To test if a node can currently be split, the member function canSplit of TreeIterator
may be used.

e The function forceSplitAncestorsRecursive force-splits a node by first splitting the nodes an-
cestors.
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* collapseNode performs an edge collapse of a node. The passed node is expected to lie on the front of
active nodes. All topological and other constraints have to be checked before calling this function.

* The function isvValidCollapseRuntime tests the topological and neighbourhood constraints and re-
turns true if the constraints allow the node to be collapsed.

In each case, the active node front is updated as part of the vertex split and edge collapse functions and does not
have to be explicitly maintained by the caller.

A number of different options to the SelectiveRefiner can be specified by passing a SelectiveRefiner
Options struct at initialization:

* neighbourDependencies specifies the neighbourhood constraints for edge collapse and vertex split
operations.

* treeBalancing specifies the type of tree balancing performed by modifying edge collapse costs in the
decimation phase.

* reorderTriangles specifies if the triangles in the mesh will be reordered. By setting this flag to true,
the structure will be able to generate the output buffers by visiting the nodes in the hierarchy instead of
iterating over each triangle in the mesh.

* allowCollapseHelperSplits specifies that additional vertex splits may be performed to enable the
collapse of nodes that could otherwise not be collapsed because of topological constraints.

* ignorelntersectionConstraint specifies that the intersection constraint for edge collapses will
not be enforced during selective refinement. Enabling this option can lead to nonmanifold edges being
generated in the output, but in turn, it ensures that all edge collapses can be carried out without the need for
additional vertex splits.

4.1.8 View Refiner

The ViewRefiner inherits from the SelectiveRefiner to provide view-dependent refinement of a mesh.
The function refineToView takes a Camera struct as input, which defines the view parameters. The Camera
struct implements a convenenience function fromModelViewProjection to allow setting the parameters
from with the commonly used view and projection matrices.

The ViewRefiner defines the following options in the ViewRefinerOptions struct, which is passed at initializa-
tion but may be updated at runtime:

* exactViewParameterInitialization specifies how the view-dependent error metric coefficients
for each node will be generated. This parameter only has an effect during initialization.

* The remaining parameters specify which view tests will be performed during refinement and can be dy-
namically changed at runtime:
— frustumTest

— backfaceSimplification

preserveSilhouettes

shading

screenProjection

angularDeviationTolerance

projectedAreaErrorTolerance

silhouetteProjected AreaErrorTolerance
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4.2 Viewer Application

As an aid in the development and testing of the Pmesh library, we have developed a standalone cross-platform
viewer application, shown in Figure 4.1. The program was developed in parallel to the library. The application
allowed us to set most of the parameters of the library via a graphical user interface and helped us see the effects in
real-time. We also used the application to run various performance tests, including those conducted with external
libraries.

Viewport ¢ 0O x Viewport =

]
o | Clear

9 Reduced Camera2 9 Reduced camerat

X Model X
Parameters

~ Refiner View Dependent

Viewport rd Analysis

ES Original Camera2

0.12000
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Runtime

Neighbourhood Dependencies

Intersection Constraint

t-Vertex Constraint

(19.24)'19, 150
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,074 | depth 19 | /roots 3)| TeaVes 19,771 | front 4,396

Figure 4.1: Screenshot of the viewer application.

4.3 Command Line Tool

In order to help compare the quality of our decimation algorithm to that of external applications, we also developed
a simple command-line tool that takes a 3D model file as input and produces a decimated version of the original
model as output. The tool has a number of different parameters but only supports a subset of the options provided
in the library. The tool uses the Libigl library to read and write the 3D files.
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5.1 Quantative Results

5.1.1 Decimation Accuracy

In order to evaluate the quality achieved by our decimation algorithm, we first compare our implementation
to the results achieved with other programs. We then evaluate the different effects queuing and tree balancing
approaches have on the quality of the decimated meshes.

Comparison With Other Programs

We evaluated the quality of our mesh decimation algorithm by comparing the decimated meshes to those generated
by four popular programs in the domain, namely OpenFlipper, MeshLab, Blender and Qslim. All programs use a
variant of the quadric error metric for the decimation. We used the open-source program MeshLab to compare the
decimated models to the original model for the evaluation. The errors of the decimated meshes were computed
using the one-sided Hausdorff distance metric. Using the quadric cost module, we configured our library using
two different vertex placement strategies: halfedge collapse and Quadric optimal placement. We ran the tests with
six common 3D test models at decimation rates 50%, 25%, 5%, 2% and 1%. In order to generate the decimated
models and save them to a 3D mesh file format, we developed a simple command-line tool, as shown Section in
4.3.

Figures 5.1 and 5.2 show the mean errors at various simplification rates for the Fandisk and Bunny models,
respectively. A full listing of the tested models with mean and max errors are shown in Table 5.1 and Table 5.2.

We can observe that for the tested models, the mean error rates for our quadric optimal implementation is com-
parable and, in many cases, surpasses the other implementations. In the halfedge collapse case, the errors are
noticeably higher but still in the range of the other implementations. The maximum errors are in both cases also
in the range of the other algorithms.

In the case of the Lucy model, we can observe that the quadric optimal placement strategy actually has higher
maximum errors than the halfedge collapse implementation, while at the same having the lowest mean error of
the tested programs. We suspect that the issue may be related to floating-point precision issues when computing
the matrix inversion. It is worth noting that a low error rate in the employed metric does not necessarily translate
to quality on a perceptual basis. We achieved lower error rates in general when not penalizing triangle inversion,
for example. However, the data lets us conclude that our mesh decimation algorithm and implementation of the
quadric error metric is correct and comparable to other well-established implementations.
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Figure 5.1: Plotting number of triangles versus mean errors of the Fandisk model using different programs for

decimation.
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Figure 5.2: Plotting number of triangles versus mean errors of the Bunny model using different programs for
decimation.
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Model Ratio Triangles Blender QSlim Meshlab OpenFlipper Pmesh Pmesh
Qem Halfedge Optimal
Bunny 1% 696 1.40e-03 1.39e-03 1.63e-03 2.34e-03 1.99¢e-03 1.00e-03
2% 1392 8.04e-04 7.93e-04 9.14e-04 1.26e-03 1.08e-03 5.56e-04
5% 3480 3.76e-04 3.79e-04 4.34e-04 5.94e-04 4.99¢-04 2.73e-04
10% 6962 2.24e-04 2.24e-04 2.47e-04 3.15e-04 2.69¢-04 1.66e-04
25% 17406 1.11e-04 1.11e-04 1.18e-04 1.26e-04 1.11e-04 8.90e-05
50% 34814 4.70e-05 5.30e-05 5.00e-05 4.40e-05 4.10e-05 4.40e-05
Dragon 1% 2499 9.39¢-04 9.26e-04 1.07e-03 1.20e-03 1.02e-03 6.58e-04
2% 4998 5.47e-04 5.21e-04 5.93e-04 7.20e-04 6.05e-04 3.74e-04
5% 12498 2.66e-04 2.53e-04 2.81e-04 3.46e-04 2.89¢-04 1.83e-04
10% 24998 1.58e-04 1.50e-04 1.67e-04 1.99¢-04 1.66e-04 1.14e-04
25% 62498 8.60e-05 8.20e-05 9.00e-05 9.40e-05 7.90e-05 6.50e-05
50% 124998 4.40e-05 4.30e-05 4.80e-05 4.20e-05 3.50e-05 3.40e-05
Fandisk 1% 128 9.68e-04 9.69¢-04 1.28e-03 1.84e-03 1.58e-03 7.35e-04
2% 258 2.72e-04 2.68e-04 2.97e-04 5.14e-04 4.53e-04 1.82e-04
5% 646 6.90e-05 6.90e-05 8.10e-05 1.23e-04 9.80e-05 4.50e-05
10% 1294 2.30e-05 2.40e-05 2.70e-05 3.70e-05 3.00e-05 1.60e-05
25% 3236 3.00e-06 4.00e-06 4.00e-06 4.00e-06 3.00e-06 3.00e-06
50% 6472 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
Happy 1% 986 2.88e-03 3.02e-03 3.40e-03 3.42e-03 3.06e-03 3.22e-03
2% 1972 1.36e-03 1.95e-03 2.76e-03 1.86e-03 1.66e-03 1.95e-03
5% 4930 5.68e-04 9.40e-04 1.57e-03 8.46e-04 7.48e-04 9.35e-04
10% 9860 3.16e-04 5.20e-04 8.79e-04 4.50e-04 4.05e-04 5.12e-04
25% 24649 1.52e-04 2.31e-04 3.72e-04 1.90e-04 1.72e-04 2.25e-04
50% 49299 7.10e-05 1.00e-04 1.64e-04 7.70e-05 7.10e-05 9.70e-05
Lucy 1% 998 1.62e-03 1.64e-03 2.00e-03 2.13e-03 1.87e-03 1.28e-03
2% 1998 8.91e-04 8.98e-04 1.10e-03 1.23e-03 1.12e-03 7.15e-04
5% 4998 4.28e-04 4.10e-04 4.97e-04 5.99e-04 5.30e-04 3.16e-04
10% 9996 2.45e-04 2.38e-04 2.81e-04 3.41e-04 2.98e-04 1.78e-04
25% 24992 1.17e-04 1.14e-04 1.32e-04 1.43e-04 1.26e-04 8.60e-05
50% 49984 5.10e-05 5.20e-05 6.00e-05 5.30e-05 4.80e-05 4.10e-05
Ogre 1% 1239 1.09e-03 1.74e-03 3.14e-03 1.80e-03 2.35e-03 2.03e-03
2% 2479 5.89e-04 9.53e-04 2.04e-03 1.13e-03 1.22e-03 7.81e-04
5% 6199 2.63e-04 4.22e-04 1.20e-03 6.05¢-04 6.67e-04 2.97e-04
10% 12400 1.46e-04 2.16e-04 5.65e-04 3.39e-04 3.19e-04 1.49e-04
25% 31001 6.00e-05 7.40e-05 1.37e-04 1.09e-04 1.01e-04 5.40e-05
50% 62004 2.00e-05 2.20e-05 3.20e-05 2.80e-05 2.60e-05 1.70e-05

Table 5.1: Mean errors in comparison of various mesh simplification algorithms



5 Experimental results

Model Ratio Triangles Blender QSlim Meshlab OpenFlipper Pmesh Pmesh
Qem Halfedge Optimal
Bunny 1% 696 1.06e-02 8.56e-03 1.01e-02 1.64e-02 1.05e-02 7.82e-03
2% 1392 7.68e-03 5.80e-03 7.51e-03 9.44e-03 6.63e-03 4.58e-03
5% 3480 4.53e-03 3.05e-03 3.52e-03 4.02e-03 3.72e-03 2.99e-03
10% 6962 1.95e-03 1.88e-03 1.90e-03 2.84e-03 2.34e-03 1.50e-03
25% 17406 8.01e-04 8.52e-04 1.11e-03 1.62e-03 8.98e-04 8.66e-04
50% 34814 3.30e-04 3.50e-04 4.88e-04 6.53e-04 4.57e-04 7.19e-04
Dragon 1% 2499 3.54e-02 1.48e-02 1.09e-01 1.65e-02 1.18e-02 1.01e-02
2% 4998 1.53e-02 4.55e-03 6.14e-02 1.65e-02 6.87e-03 5.44e-03
5% 12498 1.48e-02 3.00e-03 1.47e-02 1.65e-02 3.72e-03 3.52e-03
10% 24998 2.38e-03 2.97e-03 1.48e-02 1.65e-02 2.41e-03 2.91e-03
25% 62498 2.53e-03 2.58e-03 1.48e-02 1.65e-02 2.44e-03 2.55e-03
50% 124998 2.47e-03 2.57e-03 1.48e-02 1.65e-02 2.49e-03 2.56e-03
Fandisk 1% 128 1.20e-02 1.10e-02 1.60e-02 2.17e-02 1.79e-02 9.85e-03
2% 258 2.96e-03 3.73e-03 6.38e-03 5.02e-03 4.17e-03 2.49e-03
5% 646 1.05e-03 1.11e-03 1.86e-03 1.36e-03 1.34e-03 6.15e-04
10% 1294 3.59e-04 3.50e-04 4.63e-04 4.93e-04 4.95e-04 2.18e-04
25% 3236 4.90e-05 5.00e-05 1.40e-04 7.40e-05 8.30e-05 5.60e-05
50% 6472 4.00e-06 7.00e-06 6.00e-06 5.00e-06 4.00e-06 4.00e-06
Happy 1% 986 1.46e-02 1.69e-02 2.04e-02 1.80e-02 2.91e-02 1.80e-02
2% 1972 8.40e-03 1.27e-02 1.58e-02 1.30e-02 1.42e-02 1.70e-02
5% 4930 7.23e-03 9.03e-03 1.04e-02 7.32e-03 8.75e-03 8.82e-03
10% 9860 7.63e-03 7.88e-03 1.01e-02 8.18e-03 8.75e-03 9.25e-03
25% 24649 8.11e-03 7.92e-03 8.63e-03 8.18e-03 8.19e-03 7.97e-03
50% 49299 7.87e-03 7.85e-03 7.30e-03 7.87e-03 7.87e-03 7.85e-03
Lucy 1% 998 1.13e-02 1.75e-02 2.42e-02 1.36e-02 1.86e-02 2.46e-02
2% 1998 6.23e-03 7.60e-03 1.10e-02 9.57e-03 2.17e-02 2.16e-02
5% 4998 3.31e-03 3.63e-03 6.80e-03 4.51e-03 7.32e-03 8.26e-03
10% 9996 1.96e-03 2.44e-03 3.60e-03 2.59¢-03 3.90e-03 1.99¢e-03
25% 24992 1.09e-03 1.21e-03 1.90e-03 2.09e-03 1.46e-03 1.31e-03
50% 49984 4.50e-04 8.66e-04 1.58e-03 1.02e-03 1.33e-03 1.60e-03
Ogre 1% 1239 1.05e-02 1.16e-02 1.60e-02 1.20e-02 2.02e-02 1.22e-02
2% 2479 5.20e-03 5.68e-03 1.39e-02 7.98e-03 7.10e-03 9.07e-03
5% 6199 2.36e-03 3.77e-03 7.92e-03 3.96e-03 5.46e-03 4.77e-03
10% 12400 1.16e-03 2.08e-03 5.26e-03 2.51e-03 2.58e-03 1.49e-03
25% 31001 7.78e-04 6.52¢e-04 1.71e-03 1.10e-03 8.42e-04 9.12e-04
50% 62004 3.21e-04 3.22e-04 5.83e-04 5.46e-04 4.22e-04 3.14e-04

Table 5.2: Max errors in comparison of various mesh simplification algorithms
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5 Experimental results

Quality Evaluation of Queuing and Tree Balancing Approaches

In order to evaluate the effect different queuing and tree balancing approaches have on the quality of the generated
meshes, we performed the same test as discussed in Section 5.1.1 and compared it to the default implementation.
The test included the following different settings:

* Default: The default settings corresponds to the default queuing algorithm in the Decimator module
* Lazy: Uses lazy cost evaluation

* Balance Small Decimation is performed by building a collapse hierarchy using the SelectiveRefiner com-
ponent and biasing the cost.

* Balance Full Decimation is performed by building a collapse hierarchy using the SelectiveRefiner compo-
nent and modifying the cost with the full tree balancing term.

* Independent 12%: Decimation is performed using the independent sets algorithm with a batch size ratio
of 12%.

Figures 5.3 and 5.4 show the mean errors at various simplification rates for the Fandisk and Bunny models,
respectively. A full listing of the tested models with mean and max errors are shown in Table 5.3 and Table 5.4.

We notice that the Balance Small algorithm shows noticeably higher errors than the default algorithm. However,
at low triangle counts, the error approaches that error of the default implementation. Balance Full has a signifi-
cantly higher error at all reduction ratios. The errors for the Lazy queuing approach are very close to the default
implementation in all the tested and across all of the tested models. The errors for the Independent sets algorithm
are comparable to Balance Full and are significant in comparison to the default implementation.

The findings with respect to the Lazy queuing algorithm and Independent sets algorithm seems to confirm the
results of similar tests described in [LRCT03].

Fandisk Mesh - Mean Error

- : -
[ . —a— Default ]
i —-— Lazy 1
| —a— Balance Small )
——  Balance Full
+— Independent (12%)

| | | | |
160 320 640 1,280 2,560

no. triangles

Figure 5.3: Plotting number of triangles versus mean errors of the Fandisk model using different queuing algo-
rithms and tree balancing approaches.
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5 Experimental results

Bunny Mesh - Mean Error

T I I
—a— Default
—E— Lazy

0.001 - —— Balance Small =
I ——  Balance Full 2
. —a— Independent (12%) | |
0.0001 |- —

| | | | | | | |

583 1,050 1,890 3,400 6,120 11,000 19,800 35,700

no. triangles

Figure 5.4: Plotting number of triangles versus mean errors of the Bunny model using different queuing algo-
rithms and tree balancing approaches.
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5 Experimental results

Model Ratio Triangles Default Lazy Small Full Balancing Independent
Balancing 12%
Bunny 1% 696 1.00e-03 1.01e-03 1.02e-03 1.41e-03 1.41e-03
2% 1392 5.56e-04 5.68e-04 6.52e-04 7.29¢e-04 7.68e-04
5% 3480 2.73e-04 2.72e-04 3.62e-04 3.85e-04 3.56e-04
10% 6962 1.66e-04 1.66e-04 2.05e-04 2.18e-04 2.25e-04
25% 17406 8.90e-05 9.00e-05 1.14e-04 1.23e-04 1.18e-04
50% 34814 4.40e-05 4.50e-05 4.80e-05 4.60e-05 6.10e-05
Dragon 1% 2499 6.57e-04 6.67¢-04 6.70e-04 9.17e-04 8.48e-04
2% 4998 3.74e-04 3.73e-04 3.71e-04 4.94e-04 4.88e-04
5% 12498 1.83e-04 1.83e-04 1.84e-04 2.55e-04 2.46e-04
10% 24998 1.14e-04 1.14e-04 1.14e-04 1.51e-04 1.56e-04
25% 62498 6.50e-05 6.50e-05 6.70e-05 8.60e-05 8.40e-05
50% 124998 3.40e-05 3.40e-05 3.60e-05 3.50e-05 4.30e-05
Fandisk 1% 128 7.35e-04 7.24e-04 7.19e-04 2.35e-03 3.57e-03
2% 258 1.82e-04 1.77e-04 2.05e-04 6.51e-04 1.57e-03
5% 646 4.50e-05 4.20e-05 1.01e-04 1.86e-04 3.16e-04
10% 1294 1.60e-05 1.50e-05 4.90e-05 4.90e-05 1.12e-04
25% 3236 3.00e-06 3.00e-06 2.30e-05 2.20e-05 3.40e-05
50% 6472 0.00e+00 0.00e+00 1.00e-06 0.00e+00 1.20e-05
Happy 1% 986 3.22e-03 3.37e-03 3.97e-03 4.15e-03 3.88e-03
2% 1972 1.95e-03 2.02e-03 2.28e-03 2.64e-03 2.38e-03
5% 4930 9.35e-04 9.37e-04 1.16e-03 1.18e-03 1.11e-03
10% 9860 5.12e-04 5.20e-04 6.25¢-04 6.46¢e-04 6.25¢-04
25% 24649 2.25e-04 2.26e-04 2.68e-04 2.90e-04 2.76e-04
50% 49299 9.70e-05 9.90e-05 1.00e-04 9.90e-05 1.23e-04
Lucy 1% 998 1.28e-03 1.28e-03 1.28e-03 1.72e-03 1.67e-03
2% 1998 7.15e-04 7.28e-04 7.15e-04 9.55e-04 9.14e-04
5% 4998 3.16e-04 3.18e-04 3.16e-04 4.65e-04 4.13e-04
10% 9996 1.78e-04 1.78e-04 1.78e-04 2.34e-04 2.46e-04
25% 24992 8.60e-05 8.70e-05 8.60e-05 1.17e-04 1.12e-04
50% 49984 4.10e-05 4.20e-05 4.10e-05 4.30e-05 5.50e-05
Ogre 1% 1239 1.56e-03 1.65e-03 1.58e-03 1.35e-03 1.33e-03
2% 2479 7.18e-04 7.28e-04 7.37e-04 6.36e-04 6.49e-04
5% 6199 2.94e-04 3.02e-04 2.51e-04 3.17e-04 2.97e-04
10% 12400 1.49¢e-04 1.46e-04 1.20e-04 1.50e-04 1.60e-04
25% 31001 5.40e-05 5.40e-05 6.40e-05 7.30e-05 6.70e-05
50% 62004 1.70e-05 1.70e-05 1.90e-05 1.80e-05 3.30e-05

Table 5.3: Mean errors in comparison of different queuing and tree balancing approaches.
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5 Experimental results

Model Ratio Triangles Ratio Default Lazy Small Full Independent
Balancing Balancing 12%
Bunny 1% 696 1% 7.82E-03 6.03E-03 8.25E-03 1.37E-02 1.22E-02
2% 1392 2% 4.58E-03 4.94E-03 6.05E-03 8.42E-03 8.24E-03
5% 3480 5% 2.99E-03 2.66E-03 6.95E-03 6.32E-03 5.94E-03
10% 6962 10% 1.50E-03 1.83E-03 3.46E-03 4.06E-03 5.20E-03
25% 17406 25% 8.66E-04 8.54E-04 2.93E-03 3.74E-03 3.87E-03
50% 34814 50% 7.19E-04 7.14E-04 7.39E-04 7.39E-04 1.85E-03
Dragon 1% 2499 1% 1.01E-02 8.63E-03 1.18E-02 1.94E-02 1.85E-02
2% 4998 2% 5.44E-03 6.00E-03 7.04E-03 1.49E-02 1.85E-02
5% 12498 5% 3.52E-03 2.96E-03 2.92E-03 1.49E-02 1.85E-02
10% 24998 10% 2.91E-03 2.93E-03 3.01E-03 1.49E-02 1.85E-02
25% 62498 25% 2.55E-03 2.55E-03 2.56E-03 1.49E-02 1.45E-02
50% 124998 50% 2.56E-03 2.52E-03 2.56E-03 2.56E-03 1.35E-02
Fandisk 1% 128 1% 9.85E-03 8.98E-03 1.12E-02 5.62E-02 5.18E-02
2% 258 2% 2.49E-03 2.20E-03 3.95E-03 2.95E-02 5.05E-02
5% 646 5% 6.15E-04 5.39E-04 2.56E-03 1.71E-02 2.80E-02
10% 1294 10% 2.18E-04 2.18E-04 4.85E-03 6.03E-03 1.37E-02
25% 3236 25% 5.60E-05 5.60E-05 5.49E-03 6.03E-03 1.17E-02
50% 6472 50% 4.00E-06 3.00E-06 2.10E-05 9.00E-06 5.74E-03
Happy 1% 986 1% 1.80E-02 2.22E-02 2.12E-02 2.50E-02 2.19E-02
2% 1972 2% 1.70E-02 1.57E-02 1.59E-02 1.69E-02 1.68E-02
5% 4930 5% 8.82E-03 8.40E-03 1.15E-02 1.02E-02 8.52E-03
10% 9860 10% 9.25E-03 9.13E-03 7.68E-03 7.74E-03 7.46E-03
25% 24649 25% 7.97E-03 7.92E-03 7.97E-03 7.97E-03 7.96E-03
50% 49299 50% 7.85E-03 7.85E-03 7.85E-03 7.85E-03 7.78E-03
Lucy 1% 998 1% 2.46E-02 2.37E-02 2.46E-02 2.71E-02 2.09E-02
2% 1998 2% 2.16E-02 2.15E-02 2.16E-02 1.84E-02 1.62E-02
5% 4998 5% 8.26E-03 9.80E-03 8.26E-03 7.92E-03 8.94E-03
10% 9996 10% 1.99E-03 1.87E-03 1.99E-03 3.00E-03 4.31E-03
25% 24992 25% 1.31E-03 1.10E-03 1.31E-03 1.55E-03 1.59E-03
50% 49984 50% 1.60E-03 8.57E-04 1.60E-03 1.31E-03 1.53E-03
Ogre 1% 1239 1% 1.22E-02 1.78E-02 1.72E-02 1.56E-02 1.86E-02
2% 2479 2% 9.07E-03 8.64E-03 8.18E-03 1.08E-02 1.31E-02
5% 6199 5% 4.77E-03 4.96E-03 3.07E-03 9.87E-03 9.19E-03
10% 12400 10% 1.49E-03 1.32E-03 2.50E-03 3.53E-03 4.85E-03
25% 31001 25% 9.12E-04 6.94E-04 1.20E-03 2.46E-03 2.15E-03
50% 62004 50% 3.14E-04 3.14E-04 2.78E-04 2.78E-04 1.50E-03

Table 5.4: Max errors in comparison in comparison of different queuing and tree balancing approaches.
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5 Experimental results

5.1.2 Performance Measurements
Comparison With External Libraries

We evaluated the performance of our mesh decimation algorithm and compared it to three popular mesh process-
ing libraries: OpenMesh, CGAL and Libigl. We conducted the tests by integrating the libraries into our viewer
application and ran a dedicated benchmark procedure on each implementation for a number of different meshes.
In order to evaluate the performance on larger meshes, we included three models from the Stanford 3D Scan-
ning Repository whose size range from 1 million to around 7 million triangles. The measurement for the smaller
models was averaged over 10 runs. Each mesh was decimated to 10% of its original triangles.

We additionally measured the time it took to initialize each of the libraries mesh data structures. In order to avoid
measuring file I/O, we initialized each library from memory. The results of these measurements are, however, not
directly comparable since each of the libraries handles initialization differently. Furthermore, these measurements
for time;ns; also include the running time of our own code since we were unable to pass contiguous buffers to the
libraries but rather had to add each vertex and face individually.

Apart from the external libraries, we measured the decimation and initialization times for different configurations
of our own library: Pmesh Lazy corresponds to the lazy queuing algorithm. For Pmesh View the ViewRefiner
module was initialized, which includes building edge collapse hierarchy during the decimation process. For
Pmesh Independent the independent sets algorithm was used.

All tests were performed on a Lenovo laptop with an AMD Ryzen 7 5800H 3.20 GHz CPU and 16GB of RAM
running Windows 10. The application and all external libraries were compiled with Visual Studio 2019 with
maximum optimization (/O2) and debugging checks disabled. For each of the mesh libraries in the comparison,
we used the latest versions available, .i.e., OpenMesh 8.1, CGAL 5.3, and Libigl 2.2.0.

The results of the measurements is shown in Table 5.5.

We find that for each of the meshes in the test, our library performs faster than any of the external libraries tested.
Even in the Pmesh View case, which includes initializing the edge collapse hierarchy and computing the view-test
parameters for each node, the time taken is lower in all but one case, where the test result matches that of the
fastest external library. Out of the external libraries, OpenMesh has the best performance. The measured times
for CGAL and Libigl are significantly worse in each case. For three of the models, Libigl failed to produce a
result. For the Happy model, OpenMesh got stuck, and we had to manually kill the process.

Comparing the timings for the different configurations of Pmesh, we find that the lazy queuing algorithm does
indeed provide a significant speed advantage compared to the default queueing approach. This is especially
noteworthy since the comparison in 5.1.1 showed that there is virtually no difference between the two in terms
of decimation quality. The independent sets algorithm is slower in most cases than the default implementation.
We expect, however, that the timings could be improved by using a different sorting algorithm as described in
[PDO4].
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5 Experimental results

Model NinTriangles Algorithm Nrriangles timeinit (8) timegec (8)  timegotar ()
Happy 1,087,716  Libigl N/A N/A N/A N/A
OpenMesh N/A N/A N/A N/A
Pmesh Lazy 108,540 0.13 4.65 4.77
Pmesh 108,540 0.13 6.15 6.29
Pmesh View 108,540 0.13 6.51 6.65
Pmesh Independent 108,540 0.13 6.65 6.78
CGAL 108,520 0.47 21.41 21.88
Dragon 7,219,045 Libigl N/A N/A N/A N/A
Pmesh Lazy 721,903 0.80 40.72 41.52
Pmesh 721,903 0.79 45.65 46.45
Pmesh Independent 721,903 0.83 47.52 48.35
Pmesh View 721,903 0.79 50.17 50.96
OpenMesh 721,877 1.30 54.47 55.76
CGAL 721,861 3.08 133.33 136.41
Nefertiti 2,018,232 Pmesh Lazy 201,822 0.26 9.56 9.81
Pmesh 201,822 0.27 11.88 12.15
Pmesh Independent 201,822 0.26 12.05 12.31
Pmesh View 201,822 0.26 13.03 13.29
OpenMesh 201,818 0.44 15.28 15.72
CGAL 201,822 0.92 34.40 35.32
Libigl 201,822 0.01 46.71 46.72
Max Planck 99,991 Libigl N/A N/A N/A N/A
Pmesh Lazy 9,998 0.01 0.22 0.23
Pmesh 9,999 0.01 0.33 0.34
Pmesh Independent 9,998 0.01 0.35 0.36
Pmesh View 9,999 0.01 0.38 0.39
OpenMesh 9,960 0.02 0.41 0.43
CGAL 9,972 0.04 1.76 1.80
Bunny 69,630 Pmesh Lazy 6,962 0.01 0.15 0.16
Pmesh Independent 6,962 0.01 0.22 0.23
Pmesh 6,962 0.01 0.23 0.23
Pmesh View 6,962 0.01 0.27 0.28
OpenMesh 6,958 0.01 0.28 0.29
CGAL 6,962 0.03 1.13 1.17
Libigl 6,962 0.00 1.23 1.24
Horse 96,966 Pmesh Lazy 9,696 0.01 0.26 0.26
Pmesh 9,696 0.01 0.39 0.40
Pmesh Independent 9,696 0.01 0.40 0.41
OpenMesh 9,692 0.02 0.43 0.45
Pmesh View 9,696 0.01 0.44 0.45
Libigl 9,696 0.00 1.66 1.66
CGAL 9,736 0.04 1.90 1.94

Table 5.5: Comparison of mesh decimation times for different library implementations. The meshes were deci-
mated to a ratio of 10%.
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5 Experimental results

Model Input Triangles  Algorithm Tree Depth  Processing Triangles Delta  Operations
[ms] Triangles
Happy 1,087,716  BalancingFull 20 3.5 39,200 228 267
BalancingSmall 18 3.5 38,178 222 253
Default 45 34 38,162 219 254
Independent12 29 3.6 39,091 228 260
Nefertiti 2,018,232  BalancingFull 24 1.5 22,909 164 239
BalancingSmall 38 1.6 23,545 168 255
Default 35 1.6 23,616 168 254
Independent12 32 1.6 23,534 169 245
Dragon 7,219,045 BalancingFull 26 2.6 30,031 203 197
BalancingSmall 40 2.7 30,287 202 203
Default 41 2.8 30,351 204 208
Independent12 37 2.7 30,724 208 207
Igea 268,686 BalancingFull 19 1.1 25,658 189 286
BalancingSmall 17 1.2 23,504 172 258
Default 27 1.1 23,136 171 267
Independent12 26 1.1 24,561 179 270
Lucy 99,970 BalancingFull 18 0.9 28,270 179 158
BalancingSmall 34 0.9 28,654 181 161
Default 34 0.9 28,654 181 161
Independent12 26 0.9 28,794 182 156
Max Planck 99,991 BalancingFull 19 0.5 18,082 118 152
BalancingSmall 27 0.5 18,102 118 157
Default 27 0.5 18,107 118 156
Independent12 26 0.5 18,478 120 154
Bunny 69,630 BalancingFull 17 0.5 17,771 108 146
BalancingSmall 20 0.5 17,640 108 146
Default 25 0.5 17,783 108 152
Independent12 23 0.5 18,311 111 148

Table 5.6: Comparison of frame times for view dependent refinement.

Run-time Performance of View-Dependent Refinement

We measured the runtime performance of the view-dependent refinement algorithm using the same setup as
described in Section 5.1.2. We tested the default algorithm without any tree balancing, as well as three different
configurations for tree balancing, BalancingFull, BalancingSmall, and Independenti2. In order to the conduct
test, we recorded the position and viewing direction of a virtual camera and averaged the collected data over a
total of 6166 frames for each of the different algorithms.

The results of the measurements are shown in Table 5.6. The column Processing represents the time processing
per frame in milliseconds. The column Triangles is the average number of triangles per frame. Delta Triangles
shows the average number of triangles that were added or removed in each frame. The column operations is the
average of the sum of vertex splits and edge collapses performed in each frame.

We can see that the processing times remain roughly the same for each of the algorithms tested. The processing
time is not proportional to the number of operations per frame or the number of active triangles but also depends
on the overall model size. As can be seen, when comparing the Happy model with roughly 1 million triangles to
the dragon model, roughly 7 million triangles other factors such as the mesh topology can be significant.
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6 Conclusion and discussion

The main objective of this thesis was to design and implement an efficient and parametrizable algorithm for
edge-collapses and vertex splits.

In this thesis, we presented how we constructed our data structures and explained the workings of the algorithms
we used. We conducted a range of tests to compare the performance and general quality of our solution to other
existing programs and libraries.

We developed a self-contained library that covers a range of application areas. We built components that can be
used for continuous level of detail representations of meshes or for more general mesh simplification tasks. We
also investigated and implemented algorithms for the selective refinement of meshes, which includes a component
for view-dependent refinement. We believe that our implementation is well parameterizable and can be extended
by additional components through the use of well-defined interfaces.

The comparing analysis with other programs in terms of mesh decimation quality showed that the presented
solution matches or exceeds that of the tested programs. In terms of performance, we find that our implementation
is significantly faster than some of the other libraries we tested.
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