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Zusammenfassung

Seit Beginn des 21. Jahrhunderts stellen DDoS-Angriffe eine grofle Bedrohung dar fiir die
Verfiigbarkeit von Dienstleistungen, die mit dem Internet verbunden sind, da sie weitrei-
chende Auswirkungen auf Unternehmen, Organisationen und die Gesellschaft als Ganzes
haben kénnen. Da die Haufigkeit, das Volumen und der Schweregrad von DDoS-Angriffen
kontinuierlich zunehmen, sind sowohl in der Forschung als auch in der Industrie Applika-
tionen zur Analyse von DDoS-Angriffen entstanden. In dieser Arbeit werden gegenwér-
tige Programme untersucht, die Analyse- und Schutzdienste fiir DDoS-Angriffe auf der
Grundlage von Netzwerkverkehrsanalysen anbieten. Ausserdem wird das Fehlen verteil-
ter, kollaborativer Eigenschaften in diesen Tools diskutiert. Das Hauptziel dieser Arbeit
ist es, einen Prototyp zu entwerfen und zu implementieren, der diese Eigenschaften erfiillt.
Dies geschieht durch die Erweiterung der Architektur von SecGrid, einer Plattform fiir die
Extraktion, Verarbeitung und Analyse von Cyber-Attacken anhand einer Post-Mortem-
Methode. Die im Rahmen der Evaluation des Prototyps durchgefiihrten Fallstudien legen
nahe, dass die vorgestellte Losung die verteilte und kollaborative Analyse von Cyber-
angriffen ermoglicht, wihrend die Skalierbarkeit und Nutzbarkeit des SecGrid-Systems
erhalten bleibt. Die im Rahmen dieser Arbeit durchgefiihrte Performance-Analyse deutet
darauf hin, dass die Skalierbarkeit in bestimmten Anwendungsfillen sogar erhcht werden
kann.
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Abstract

Since the early 2000s, DDoS attacks pose a major threat to the availability of services
connected to the internet, as they can have far-reaching impacts on businesses, organiza-
tions, and society as a whole. As DDoS attacks continue to grow in frequency, volume, and
severity, DDoS attack analysis systems have emerged both from research and industry.
This thesis examines current tools that provide DDoS attack analysis and protection ser-
vices based on network traffic analysis, and discusses the lack of distributed, collaborative
features present in these tools. The main goal of this thesis is to design and implement
a prototype that fulfills these features. This is done by extending the architecture of
SecGrid, a platform for the extraction, processing, and analysis of cyberattack traffic in a
post-mortem fashion. The case studies conducted as part of the evaluation of the proto-
type suggest that the presented solution enables the distributed and collaborative analysis
of cyberattacks, while preserving the scalability and usability of the SecGrid system. The
performance evaluation conducted as part of this thesis suggests that in certain use cases,
scalability can even be increased.
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Chapter 1

Introduction

Since the early 2000s, Distributed Denial-of-Service (DDoS) attacks pose a major threat
to the Internet availability and are one of the biggest concerns for cybersecurity [1].
DDoS attacks are malicious actors’ attempts to prevent legitimate users from accessing
information systems, devices, or other network resources [2],[3]. They happen every single
day and continue to grow in frequency, volume, and severity, despite the great commercial
and research efforts put into mitigation solutions [4]. To mitigate these attacks, the
detection and classification of their attack vectors (i.e., the path, method or mechanism
used by an attacker to carry out an attack) are vital [5]. For that, visualization systems
present an efficient approach to detect patterns in network traffic [6]. The goal of this
thesis is to improve an existing DDoS attack analysis and visualization system, enabling
the distributed, collaborative analysis of cyberattacks. The following chapter introduces
the motivation for such a system, as well as the structure of this report.

1.1 Motivation

The impacts of DDoS attacks are diverse. From a commercial perspective, they can result
in large financial losses and damage in reputation for companies [7]. Beyond that, an
attack can have a far-reaching impact on society. The telecommunication industry, as
well as the financial, educational, and health sectors are frequent targets of DDoS attacks
[8]. If a DDoS attack aimed at such a target is successful, it can result in a population
losing access to essential infrastructure. For instance, attacks on financial services can
potentially disrupt payment transactions, and attacks on healthcare institutions threaten
the seamless provision of medical services.

Ideally, a DDoS attack is mitigated as early as possible. It is considered most effective
to mitigate the attack before it even happens, or in other words, to prevent the attack
from happening at all [2]. Naturally, there is a great amount of cloud-based DDoS pro-
tection services offered by third-party providers such as Cloudflare, Akamai, Radware,
and Imperva [9],[10]. These protection services mainly focus on preventive measures as
well as attack detection and reaction, thus minimizing attack surfaces as well as limiting
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damage in the case of an attack. However, in order to keep up with the constant evolu-
tion in size, type and complexity of DDoS attacks, research efforts to create DDoS attack
analysis tools are required. [7] proposed such an analysis tool with the implementation
of DDoSGrid 2.0 as part of the SecGrid project [11]. DDoSGrid 2.0 combines the com-
ponents of two different platforms to visualize data of DDoS attacks based on network
traffic data, and share said data on a collaboratively created database. This provides the
capability of sharing the data of DDoS attacks and providing different abstraction levels
with visualizations for collaborators [12].

Having the possibility of retrieving multiple data sources from a collaboratively created
database opens new directions for further research. DDoS attacks affect various actors and
networks. For example, two services may be affected by the same cyberattack at the same
time. Similarly, the same cyberattack may be observed by multiple intermediary systems.
For instance, an upstream Internet Service Provider (ISP) may see the traffic of the same
attack, although the ISP is not the victim. This motivates the visualization of cyberattacks
using multiple perspectives from distributed collaborators. However, the implementation
of DDoSGrid 2.0 does not support that data is aggregated in an automated manner.
Instead, data needs to be merged manually. Furthermore, it does not preserve semantics
of having multiple contributors to the analysed data. This motivates the implementation
of a tool that enables multiple collaborators to analyze interrelated network traffic of
DDoS attacks in a distributed manner.

1.2 Description of Work

The goal of this thesis is to design and develop a prototype that enables multiple collab-
orators to analyze interrelated network traffic of attacks in a distributed manner. The
existing implementation of DDoSGrid will be extended to provide a basis for the dis-
tributed analysis of attacks. To achieve this goal, the work in this thesis is divided into
multiple activities.

First, an extensive literature review is provided to study the characteristics of DDoS
attacks and their related attack vectors, in order to gain thorough knowledge about the
theoretical background of this work. As a subsequent task, existing DDoS attack analysis
tools, or tools with a more general purpose that can be leveraged as DDoS attack analysis
tools, will be investigated. A particular focus is laid on the ability of these tools to provide
collaboration and the possibility to employ the tool in a distributed setting. The goal of
this step is to establish which tools have emerged from research and industry, and how
they differ from the requirements that are established in this thesis.

Next, the current implementation of the DDoSGrid platform is thoroughly investigated,
in order to gain the technical knowledge about the tool necessary to be able to extend
its functionality. After this goal is fulfilled, a feasible architecture of the extended system
is proposed. When the architecture is defined, the technologies that are to be used for
the implementation are evaluated, and the prototype is implemented on the basis of these
technologies.
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Lastly, the implemented prototype is evaluated by demonstrating its effectiveness and
provided additional value on the basis of several case studies. This step demonstrates
how the prototype can be used as a distributed attack analysis tool in a collaborative
setting.

1.3 Thesis Outline

This report is structured as follows. Chapter 2 provides the theoretical basis for this
thesis and introduces three topics required to understand DDoS analysis systems based
on network traffic data. Chapter 3 introduces related work by reviewing existing network
analysis tools that can be leveraged as DDoS attack analysis systems. First, several
criteria for the classification of a post-mortem DDoS attack analysis system are defined.
Then, the tools mentioned above are analysed based on those criteria. In Chapter 4,
the requirements established in Chapters 1 and 3 are discussed in more detail and the
architecture for the prototype is defined, the development of which will be described in
Chapter 5. Finally, the evaluation of the implemented prototype in Chapter 6, and a
summary in Chapter 7 conclude the report.
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Chapter 2

Background

In this chapter, a comprehensive overview over the underlying concepts of a collaborative
DDoS analysis tool is given. First, the concept of DDoS attacks as well as the various
possibilities of DDoS attack mitigation are investigated. Second, the concept of network
traffic analysis, which can be utilized for attack analysis and mitigation, is introduced.
Lastly, the implementation and functionality of SecGrid, the tool whose functionality will
be extended in this thesis, is discussed.

2.1 DDoS Attacks

A denial-of-service (DoS) attack is a malicious actors’ attempt to prevent legitimate users
from accessing information systems, devices, or other network resources [2],[3]. This is
done by generating an amount of traffic big enough to overwhelm the victim’s infrastruc-
ture and rendering the resource inaccessible. The motivation behind such an attack is
usually based on ideological or political belief, economic competition, cyberwarfare, or
simply an intellectual challenge [2].

Accordingly, in a distributed DoS (DDoS) attack, an attacker compromises a number of
network-connected hosts, installs some sort of malware on these hosts and thus utilizes
them to build an attack army which executes the actual DoS attack. These attack armies
are called Botnets. The bigger the attack army is, the easier it is to overwhelm the
victim’s service. The large number of unsecured devices connected to the Internet and
their growing processing capacity allows for attackers to take control of a vast amount of
devices, ranging from connected cameras to smart fridges, to launch malicious attacks [2].
Many of these devices are insecure by design and not often impossible to be secured due to
their hardware and software constraints. A well-known example of a Botnet is the Mirai
Botnet. Starting in September 2016, by exploiting the wide use of default passwords in IoT
(Internet of Things) products, the Mirai malware managed to build a Botnet consisting
of a stable population of 200’000 to 300’000 infected devices in order to launch massive
DDoS attacks [13].
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2.1.1 Types of DDoS Attacks
Classification Based on OSI Model

With respect to the OSI model, DDoS attacks can be classified based on the layer on
which the attack is targeted. Usually, the protocols of the application, transport or
network layer, which represent the 7th, 4th and 3rd layer, respectively, are utilized for
DDoS attacks [2]. Application layer attacks usually target the HTTP protocol, using
legitimate HTTP requests to overwhelm the victim’s resources [14]. In transport layer
attacks, either the UDP protocol or TCP protocol is used [15]. In the case of the latter,
the three-way handshake process of the TCP protocol is exploited. One way to do so is by
spamming the victim with SYN packets, receiving the SYN/ACK packets of the victim,
but never sending the ACK packets, resulting in many open port connections [16]. At some
point, this prevents the targeted service from responding to requests efficiently, or at all.
Similarly, the UDP protocol can be exploited by sending a large amount of spoofed UDP
packets to the victim, forcing the victim to check and respond to each packet, potentially
exhausting the victim’s resources [17]. Lastly, in the case of the network layer, attacks
are carried out using the ICMP or IP protocol [18].

Direct and Indirect Attacks

However, DDoS attacks can not only be categorized based on the layer on which they
occur. They can also be categorized into direct and indirect attacks. In direct attacks,
the attacker, or usually a botnet on their behalf, sends large amounts of packets to the
victim directly [19]. Usually, the attacker uses spoofed source addresses to conceal the
source of the attack and thus make its mitigation more difficult [20]. A direct DDoS
attack can utilize any protocol described above, or a mixture of them [19].

Indirect attacks are also called reflector attacks. As the name suggests, according to [21], a
large amount of third-party, legitimate devices are used to act as reflectors. The attacker,
or usually a botnet on their behalf, sends spoofed requests to the reflectors. Instead of
providing their own source address, they provide the address of the victim. Therefore, the
reflectors send their response packets to the victim, generating an overwhelming amount
of traffic. This implies that any device that is able to respond to requests is a potential
reflector. Moreover, [21] consider amplification attacks as variation of reflector attacks,
where the reflectors are selected such that the reply sent to the victim is many times
larger with respect to the amount of data being sent, compared to the preceding request.

Multi-Vector DDoS Attacks

A significant development in DDoS attacks is reflected in multi-vector DDoS attacks.
Instead of utilizing only one attack vector, like for instance a SYN flood attack, several
vectors are utilized, either at the same time, or one shortly after the other. Usually,
various layers are targeted. While this kind of DDoS attack is considered to be the
new normal [22], they are harder to mitigate than conventional attacks. First, given



2.2. NETWORK TRAFFIC ANALYSIS 7

the various attack vectors, the volume of attack data is colossal. Second, while attack
mitigation systems can nowadays effortlessly mitigate a single-vector attack, they struggle
to mitigate multi-vector attacks due to their complex nature and their constant evolution
[23].

2.1.2 DDoS Attack Mitigation

DDoS attack mitigation is "the process of successfully protecting a targeted server or
network from a DDoS attack”, as defined in [24]. In order to mitigate an attack, defense
mechanisms are deployed. A suitable way to classify defense mechanisms is by the point
in time at which a mechanism is deployed, relative to the time when a DDoS attack
occurs [2].

A defense mechanism can be deployed before an attack, in order to prevent it. According
to [25], preventive mechanisms attempt to prevent DDoS attacks from happening alto-
gether, or to endure the attack while preventing a denial of service to legitimate clients.

During an attack, attack detection is achieved if attack signs are present on a service and
they are picked up either by a monitoring system or by human operators. Available detec-
tion techniques include detecting anomalies in traffic data and tracing attack sources [26].
After the attack has been detected, suitable mitigation techniques are deployed in order
to minimize downtime of the service under attack. Naturally, these techniques vary de-
pending on the type of DDoS attack vector, and on which OSI-layer the attack occurs
(e.g., network layer, transport layer, or application layer). For instance, in the case of an
application layer attack, enhancing firewall rules is a valid approach to attack mitigation,
whereas attacks on other layers require different traffic filtration techniques [24].

The DDoS mitigation process continues after an attack. While it is not possible to mitigate
the current attack after it has finished, the data gathered in the previous mitigation steps
can be analysed in order to take countermeasures and derive new preventive mechanisms.
This in turn helps mitigating future attacks.

2.2 Network Traffic Analysis

Network traffic analysis is the process of observing and analysing network activity on a
given interface and it is applied in various sub-domains of computer science. For instance,
possible applications are network problem identification and troubleshooting systems in
the area of network engineering, or anomaly detection systems as part of security engi-
neering [27].

Flow export data and packet capture (PCAP) data are often used as data sources for
network traffic analysis. Flow export is an approach where packets are aggregated into
flows and exported for storage and analysis [28]. NetFlow, a network protocol created by
Cisco, defines a flow as follows: A flow is an array of packets with mutual properties like
packet header fields such as source and destination IPs, port numbers, and timestamps,
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that pass through a network device, where they are collected and exported [28],[29].
Similarly, packet capture is a procedure where complete packets are captured. The packet
capture output can be stored in PCAP-formatted files. Since packet capture exports all
packets in their entirety, as opposed to flow exports, they provide more detail than flow
exports [28]. In contrast, flow exports are a preferable approach when used in high-speed
networks, since they significantly reduce the amount of data to be stored [28]. There
is a vast amount of network traffic analysis tools, both open-source and commercial,
among which WireShark, Arkime, and SolarWinds are popular. In addition, conventional
monitoring tools such as the ELK stack can be leveraged for the purpose of network traffic
analysis.

2.3 SecGrid

The SecGrid platform is an open-source platform that offers a process for cyberattack
traffic extraction, processing and analysis in a post-mortem fashion. It aims to provide
insightful data and visualizations for a better understanding of different types of cyber-
attacks [12]. DDoSGrid is a runnable instance of the SecGrid platform, and thus the two
names are used interchangeably in this work. The platform consists of three main com-
ponents: the analysis layer, the database layer, and the user interface [12]. The analysis
component together with the database component comprise the data layer, whereas the
user interface comprises the user layer.

The analysis component takes PCAP data as input. It handles the traffic analysis process,
during which the PCAP parser extracts packets based on their protocol and transmits
these packets to the miners. The miners of SecGrid are software components that are
responsible for the extraction of information from PCAP data. They process individual
packets in order to extract features from different protocols. For instance, a miner specific
to the HTTP protocol will collect statistics about the distribution of HTTP verbs (e.g.,
GET, PUT, POST) used in requests. Table 2.1 shows some examples of miners, along with
the features they extract and the layer they target according to the OSI model. After
the analysis of the input data has finished, each miner runs a post-parsing analysis in
order to structure the data and extract features for insights in the form of visualizations
or manual data inspection. The analysis process is either invoked via a Command Line
Interface (CLI) or the user interface.

The user interface is a web-based interface that allows for the user to upload PCAP
data, and after the analysis process is completed, interact with it. The main component
of the interface is the visualization module, which enables the user to interact with a
subset of the analysed data and transform it into visualizations, such that the user can
gain insights about the data in a user-friendly manner. Every analysis is stored in the
database. Therefore, the user can access and inspect previous analyses at any point in
time, and the analysis only needs to be done once for each dataset.

Due to the open-source nature of the platform and the modular architecture of the analysis
layer, the platform shows high extensibility. Additional miners can be implemented and
easily integrated into the analysis workflow, along with the existing miners. In addition,
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Miner Extracted Features OSI Layer
Moetrics Analvzer General metrics (attack duration, Network
Y number of packets, IPs and ports) Layer
ICMP Messages Overview of ICMP message types Network
Layer
IP Version Analysis of IPv4 to IPv6 ratio Network
Layer
Top Source Hosts Overview of the hosts sending large Network
amounts of requests Layer
UDP vs TCP Analysis of ratio between UDP and TCP Transport
Ratio packets Layer
Analysis of distribution of TCP flags Transport
TCP States (e.g., ACK, SYN, and FIN) Layer
Browser and OS | Analysis of browser and operation system | Application
Analyzer combinations used for requests Layer
Analysis of distribution of HTTP Verbs | Application
HTTP Verbs (e.g., GET, PUT, POST) in requests Layer
HTTP Endpoints Overview of endpoints accessed in HTTP | Application
requests Layer

Table 2.1: Excerpt of Miners Implemented by SecGrid [11]

the platform is scalable in terms of data handling, since packets are analysed in a stream-
based manner [12]. Instead of processing or storing large amounts of packets at a time,
the analysis layer inspects single packets and only the resulting statistics are saved in
memory. Therefore, the platform can run without specific hardware requirements.
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Chapter 3

Related Work

This chapter describes the analysis of existing network analysis tools that can be used
as post-mortem DDoS attack analysis tools. First, some criteria based upon which the
analysis is conducted are presented. Then, several traffic analysis tools are introduced,
reviewed, and compared on the basis of the defined analysis criteria.

3.1 Taxonomy

This thesis focuses on the improvement of an existing DDoS attack visualization and
analysis tool. The proposed tool is a ”"Post-mortem DDoS Attack Analysis System with a
target audience of academic teachers, researchers, and forensic personnel from the indus-
try”, as defined in [7]. In this thesis, the basis for a distributed analysis of DDoS attacks
is developed. On the one hand, this allows for better scalability of the analysis procedure.
Moreover, it enables a collaborative approach to post-mortem attack analysis, allowing
for several collaborators to contribute data to the analysis.

Based on this description of the tool, several criteria can be defined on which the analysis
of existing tools is performed:

e The general purpose of a tool is analysed. For instance, it is possible that a network
analysis tool that is used for real-time network monitoring could be leveraged as a
post-mortem DDoS attack analysis tool, even if that is not the main purpose of the
tool.

e A tool should consist of Open-Source Software (OSS) and be free of charge. The
first enables the users to comprehend how data is analysed and provides the pos-
sibility to extend the functionality of the tool, if necessary. The latter ensures the
accessibility of the tool, meaning that anyone can have access to it.

e [t is important that the tool provides visualizations, such that the targeted audience
can interact with the provided data and derive knowledge from it.

11
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e Similarly, to accommodate the technical affinity of the target audience, the tool
must exhibit a certain usability and the complexity of the tool must be low.

e The supported data sources need to be investigated. Since the tool must support
a post-mortem analysis approach, a tool that only enables real-time packet capture
and analysis can not be considered sufficient.

e Scalability is an important aspect that the tool should provide, in order to satisfy
the requirement of a collaborative analysis with multiple sources of data.

e To allow for a distributed analysis of DDoS attacks, the tool must support the
collaboration of multiple contributors.

3.2 Existing Network Analysis Tools

Now that the features relevant to our analysis are defined, they are applied on a set of
existing traffic analysis tools.

Arkime (formerly Moloch) is an open-source packet capturing system [30]. It consists of
three main components: the capture component, the viewer component, and the database
and search component. The capture component is an application that monitors network
traffic, writes PCAP formatted files, parses the captured packets, and sends metadata to
the database component. The viewer component is a Node.js application which handles
the web interface and transfer of PCAP files. The viewer supports visualizations of time
series in the form of basic line and bar charts. However, more detailed visualizations are
not available. Arkime’s architecture is designed to be deployed across multiple clustered
systems, and is therefore highly scalable [30]. It is possible to share data via the web
interface, providing a basis for a collaborative approach. However, it is not possible to
aggregate data from different collaborators and visualize the aggregated data.

Wireshark is a similar network analysis tool. It is a popular, open-source network traffic
analyzer that allows for live capture and offline analysis [31]. It consists of two components:
A graphical user interface implemented in C++ and a component for packet capture and
filtering that uses libpcap and npcap. As an alternative to live capture, the user can
upload existing PCAP files. The captured or uploaded network data can be inspected
and filtered via the user interface. The interface also provides some basic functionality
for visualizations. However, the visualization tools are more suitable for monitoring or
anomaly detection rather than manual investigation and knowledge derivation. The avail-
able statistics include the number of packets captured, the duration of the packet stream,
and the average number of packets per second, among others [32]. In terms of scalability,
Wireshark is not designed to be deployed across a cluster or across network boundaries,
and the application is single-threaded. Furthermore, it is not possible to aggregate data
from different PCAP files, which hinders the collaboration of multiple contributors.

Elk Stack (Elastic Stack) is a collection of three open-source products: Elasticsearch,
Logstash, and Kibana [33]. Elasticsearch is a search engine, Logstash is a data collection
component, and Kibana is a visualization component [34]. Kibana can transform the input
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data into any type of visualization such as bar charts and pie charts. Since Logstash is
not able to handle PCAP files, an external tool such as Wireshark, or its CLI tshark, is
needed to convert PCAP files into JSON format [35]. The Elk Stack is highly scalable and
scales vertically and horizontally. Logstash and Kibana do not offer any functionality for
aggregating data from multiple sources. Thus, in order to enable a collaborative approach,
the data fed into Logstash would already need to be aggregated. Additionally, setting up a
traffic analysis system using the Elk Stack is rather complex since communication between
the three components has to be ensured and additional tools need to be incorporated into
the system.

IVRE is an open-source network recon framework [36]. It is written in Python with a
MongoDB backend. It relies on several external tools, such as Nmap, Masscan, Nfdump,
and Zeek (Bro), to scan networks and sniff packets. The results can be browsed and filtered
using Ivre’s CLI tools, Python API, or Web interface. The web interface provides powerful
visualizations in the form of bar charts, world maps, and scatter plots, among others. The
accepted input file format largely depends on the external tool used for packet capture.
For instance, analyzing PCAP files is supported by Zeek and Nfdump, but not by Nmap
or Masscan. IVRE is not designed to be deployed across a cluster, and thus scalability
is limited. The ability to aggregate traffic data from multiple collaborators is dependent
on whether the external tool used for packet capture supports this functionality. Overall,
the general purpose of IVRE lies in intrusion detection, monitoring, and site reliability
engineering (SRE) [37] rather than traffic analysis in a post-mortem fashion.

SolarWinds Network Performance Monitor (NPM) is a commercial network monitoring
and network performance analysis tool [38]. The tool can be used as a real-time network
packet capture tool for packet analysis, traffic identification, and network data monitoring
[39]. However, it is not possible to use PCAP files or any offline data as a data source
for post-mortem analysis. It has a user interface that provides powerful visualizations of
the captured data in the form of bar charts, pie charts, and world maps. NPM is highly
scalable within network boundaries. It is not possible to aggregate and visualize packet
capture data of different sources or applications.

3.3 Comparison and Summary

Having introduced several network analysis tools that can be utilized as post-mortem
DDoS analysis tools, it becomes apparent that these tools differ in the fulfillment of our
criteria. Table 3.1 highlights the general purpose as well as the accepted data sources.
Table 3.2 summarizes to what extent each tool fulfills the criteria. In both tables, SecGrid
is listed, showing properties the tool already possesses, as described in chapter 2.3, or
properties this work aims to achieve, discussed in chapter 1.2. In the following section, a
more detailed description about the fulfillment of the criteria is given.

Considering the general purpose of each tool, it becomes evident that none of the tools are
intended specifically for the post-mortem analysis of cyberattacks. Instead, most of them
can be described more generally to be network analysis and packet capture tools, or even
general-purpose monitoring tools not focused on network analysis, specifically. However,
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most tools accept PCAP files as data source, especially in offline mode as opposed to real-
time capture. Therefore, these tools are conceptually capable to be used as post-mortem
attack analysis tools, even if that is not their main purpose. Only SolarWinds NPM is
not suitable to be used for this purpose, since it only allows real-time analysis. A similar
argument applies to the Elk Stack. While post-mortem analysis is theoretically possible,
Elk Stack is rather intended to be used for real-time monitoring. This also reflects in
the fact that NPM and Elk Stack do not accept PCAP files as data sources per default,
in contrast to the other tools. An upside of these general-purpose monitoring tools is
their scalability, since they are intended do be deployed across networks, as opposed to
Wireshark, for instance, which is intended to analyse the traffic of only one machine.

The user interfaces of most of the tools are rather complex and their operation requires
certain technical skills. This is probably due to the fact that many tools offer a wide
array of functionalities, and the user has the possibility to utilize these functionalities to
their own specific needs. Moreover, the visualizations can oftentimes only be generated
by interacting with data manually, which also requires specific technical skills and violates
the usability criteria.

General Purpose Data Sources

Arkime Packet capture and search system Network interface, PCAP (real-
time, offline)

Wireshark Packet capture and analysis Network interface, PCAP (real-
time, offline), other capture for-
mats

Elk Stack Monitoring and data analysis tool JSON files, log files (real-time)

IVRE Network recon and analysis Network interface, PCAP (real-

time, offline) (depends on exter-
nal tool used)
SolarWinds NPM  Network monitoring and perfor- Network interface, PCAP (real-

mance analysis time)
SecGrid Post-mortem cyberattack traffic PCAP (offline)
analysis

Table 3.1: Overview of surveyed network analysis tools

Considering the collaboration feature, it becomes clear that the aggregation of data from
multiple collaborators is not considered a necessary functionality for any of the tools,
as Arkime is the only tool that provides a data sharing and collaboration feature to
some extent. This is most likely due to the fact that the main purpose of these tools is
either packet capture or network monitoring in a real-time fashion. That being said, for
most tools, a collaboration feature which enables multiple collaborators to aggregate and
analyse data in a post-mortem fashion does not lie in the scope of their general purpose.

To summarize, none of the analysed tools defines post-mortem analysis of DDoS attacks as
their primary purpose. Most of the tools could theoretically be leveraged as post-mortem
analysis tools, but the fact that this is not their intended purpose is reflected in the lack
of visualization or collaboration functionality as well as the accepted data sources. As a
result, none of the tools fully satisfy the defined analysis criteria.
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Arkime v v x © v ©
Wireshark v v v © x x
Elk Stack VX v /X
IVRE v v ? J X ?
SolarWinds NPM x x © v v X
SecGrid v v v v O v

Table 3.2: Comparison of functionality. v'= provides functionality, X= does not provide
functionality, ©= provides functionality to some extent, ? = unknown.

The tools Arkime and Wireshark focus on real-time packet capture and manual analysis,
and therefore do not provide automatically generated visualizations or visualizations that
are mainly intended for humans to gain knowledge about attack data. More precisely, one
could argue that Arkime and Wireshark can be used to detect anomalies in network data,
for instance a spike in traffic, which can be an indicator for a DDoS attack. However, to
gain more detailed information about the potential attack, the data has to be investigated
manually, which violates the usability criteria

The tools Elk Stack, IVRE and SolarWinds NPM, on the other hand, focus mainly on au-
tomated network monitoring. Therefore, they focus on real-time analysis of large amounts
of data, rather than offline data analysis. They offer powerful, automatically generated
visualizations, but due to the real-time monitoring approach, they can not be leveraged
for the analysis of PCAP data in the form of file inputs.
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Chapter 4

The Distributed DDoSGrid Approach

The previous chapter has given a basic overview over the requirements of a distributed,
collaborative DDoS attack analysis tool. In this chapter, a feasible architecture for this
approach, from here on also referred to as the distributed DDoSGrid approach, or D-
DDoSGrid, is presented. In addition, the key features and the added value of this approach
are highlighted. This architecture proposition will then be used as a baseline for the
implementation of the prototype in Chapter 5.

4.1 Architecture

The current architecture of the SecGrid analysis component is depicted in Figure 4.1.
In the scope of one analysis, a single, centralized instance of the analysis component is
instantiated. After the analysis has finished, the extracted features are stored on the
same device, where they can be used for further processing. The visualization of the
current architecture not only highlights the centralized approach, but also the fact that
no collaboration is possible within the analysis lifecycle.

The proposed D-DDoSGrid architecture is visualized in Figure 4.2. In this architecture,
the distinction is made between a central node and a worker node. Due to the distributed
nature of the architecture, multiple worker nodes can be instantiated in the lifecycle of
one analysis. Each worker node runs an instance of the analysis component, containing
the packet decoder, the protocol parser, and the miners.

Extracted
Features

AR
m .| Packet «| Protocol N I |
Decoder ~l  Parser

Miners

Centralized Device

Analysis Component

Figure 4.1: Centralized Analysis Component Architecture
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Figure 4.2: D-DDoSGrid Architecture

In contrast, only one central node is launched per analysis cycle. Two data manage-
ment components on the central node are responsible for managing the data produced
by the worker nodes. First, the data processor component runs a post-processing mech-
anism that prepares the extracted features for further processing. Specifically, it ensures
that the extracted data is formatted such that it is compatible with the data formats of
SecGrid. This enables integration of the distributed DDoSGrid approach into SecGrid’s
visualization module. Second, the data aggregation component takes the results of the
various analyses as input, aggregates those results, and makes use of the post-processing
component to format the aggregated data.

The communication interface enables the exchange of data between worker nodes and the
central node. Since the PCAP files are processed on the corresponding worker nodes,
only lightweight metadata in JSON format is exchanged. Therefore, the communication
interface does not constitute a bottleneck, and thus any number of worker nodes can be
instantiated and perform an analysis. After the analysis, the extracted and aggregated
features are stored on the central node for inspection and further processing.

4.2 Key Features

The previous section has brought forward a feasible architecture as foundation for the
implementation of D-DDoSGrid. Now, the main features and improvements this archi-
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tecture entails are discussed. For each feature, a short definition is given first, followed
by a paragraph that shows to which extent the current SecGrid system implements the
feature. Lastly, it is discussed in more detail how the D-DDoSGrid architecture achieves
this feature.

4.2.1 Collaborative Analysis

In the context of D-DDoSGrid, collaboration is defined as the participation of several
independent actors in a certain task. More precisely, with respect to SecGrid being a post-
mortem cyberattack analysis tool, collaborators need to be able to contribute datasets to
an analysis. In this setting, any device that is in possession of a suitable dataset and that
is able to run the code necessary to build the SecGrid platform, or any person that is the
operator of such a device, can be referred to as a collaborator.

In the current implementation of SecGrid, collaboration is limited. The analysis com-
ponent is designed such that only one dataset can be analysed in the scope of a single
analysis. In the user interface component, it is possible to perform multiple analyses
consecutively, and then compare the results of the individual analyses in the form of
visualizations. However, this entails high manual effort. Additionally, there is no data
aggregation mechanism in place in the current implementation.

In the distributed DDoSGrid approach, collaboration is achieved by allowing multiple
independent collaborators to submit their datasets to the same analysis instance. Fur-
thermore, the analysis component of the SecGrid system is able to handle multiple data
inputs in the scope of a single analysis. It is essential that no data originating from the
datasets is lost, such that the amount of insights the actors can gain from the collaborative
approach is maximized. Therefore, the analysis system contains both a mechanism that
processes the datasets individually, and a mechanism that aggregates the data originat-
ing from the various datasets. After the analysis, the analysis results of each individual
dataset as well as the aggregated analysed data is accessible for inspection, or further
processing.

4.2.2 Distributed Computing

Distributed DDoSGrid facilitates a distributed architecture for the analysis of PCAP files.
That being said, the term distributed architecture describes an architecture that allocates
software components on multiple instances that are able to do the computing required by
the software. This differs from a centralized approach in the sense that the various software
components are not run on a single, standalone instance. In a distributed architecture, a
communication channel and the corresponding interfaces need to be established in order
to enable communication between the distributed instances.

In the current implementation of SecGrid, the analysis component is a centralized instance
that handles the entire process of parsing packets, extracting features and post-processing
the extracted metadata. The architecture does not allow the launch of multiple analysis
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instances, and thus only one dataset can be analysed in every iteration. Hence, with this
centralized approach, considering multiple data sources for a single analysis iteration is
not possible.

With the distributed DDoSGrid architecture, the analysis component architecture consists
of a central management node and multiple distributed worker nodes. The central node is
responsible for orchestrating the worker nodes, while the worker nodes perform the PCAP
data analysis and feature extraction. In addition, the central node collects metadata
(i.e., the extracted features) produced by the worker nodes, aggregates said data, and
administers the post-processing of both the non-aggregated and aggregated metadata.
Lastly, a communication channel that enables the exchange of data between the central
node and the worker nodes is established.

4.2.3 Scalable Feature Extraction

In general, application scalability describes "the ability to handle increased workload” [40].
In the context of SecGrid, this work considers increased workload to be in the form
of input datasets increasing in size. Therefore, the more efficient the application is in
handling large datasets, the more scalable it is. In addition, since this work aims to
develop a collaborative approach, the ability to analyse multiple datasets at the same
time is another characterization of scalability.

With respect to the current state of the analysis component, SecGrid is able to parse
and analyse large PCAP files, thus providing scalability partly. However, the current
architecture offers neither a mechanism to perform multiple analyses simultaneously, nor
does it provide the possibility to aggregate analysed data automatically.

Distributed DDoSGrid achieves scalable feature extraction by providing an analysis sys-
tem that is able to handle large datasets, containing several hundred thousand packets.
The approach satisfies the collaborative aspect of scalability by being able to analyse and
aggregate multiple large datasets in parallel and in the scope of a single analysis. In addi-
tion, the feature extraction mechanism is highly scalable since it enables the distribution
of workload onto multiple nodes. Instead of transferring entire datasets via the network-
ing interface, only the extracted features formatted in JSON files are sent to the central
node.

4.2.4 Other Features

In order to conserve high usability, the D-DDoSGrid analysis system incorporates a mecha-
nism that aggregates data from multiple sources without manual effort. The analysis com-
ponent as well as the metadata exchange run fully automated, regardless of the amount
of datasets that are provided.

The current SecGrid system consists of open-source software that is accessible on GitHub.
It is also free of charge, and thus anyone can have access to it. To conserve free and
unrestricted access, the software developed in this work is published on GitHub, along
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with the source code comprising the current SecGrid system. This is not the case for some
tools discussed in Chapter 3, where the source code is not accessible

The visualization module is an important component of the user interface and provides
valuable insights about the analysed data. Therefore, the D-DDoSGrid architecture is
designed such that it can be integrated into the visualization component at a later time.
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Chapter 5

Implementation

This chapter provides insight into the prototype development. The various technologies
that are considered for the extended software components are discussed, and the steps that
are taken in order to develop the prototype according to the requirements and architecture
elicited in Chapter 4 are reviewed. Lastly, the limitations and challenges that are discov-
ered during the implementation process are discussed, as well as the countermeasures that
are undertaken to manage those challenges.

5.1 Implementation of Key Components

In order to implement the key features of the D-DDoSGrid approach proposed in Section
4.2, multiple intermediate implementation steps are extracted. First, the implementation
of the analysis component needs to be extended such that it can satisfy the distributed
aspect of the DDoS-Grid approach. Second, a suitable communication interface needs to
be established to enable collaborators to communicate and exchange data with the central
node. Lastly, the data aggregation mechanism needs to be designed such that not only
the individual feature extraction mechanisms of the miners, but also the need to maintain
a consistent data format for all actors involved are taken into account.

As for the technology used for the implementation of the D-DDoSGrid prototype, all
of SecGrid’s components are implemented in JavaScript. The analysis component runs
with Node.js, an asynchronous, event-driven JavaScript runtime [41]. Therefore, the
extensions of the analysis component implemented in this work are also developed using
Node. js. For the communication interface, the Socket. I0 library is used.

5.1.1 D-DDoSGrid Analysis Component

As defined in the D-DDoSGrid architecture (cf., Figure 4.2), the analysis component
consisting of the packet decoder, protocol parser, and the miners are instantiated on every
worker node in order to enable distributed computing. To facilitate the handling of interim
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results, a public getInterimResult getter function specific to each miner is implemented.
After the miners have completed the feature extraction, the results are stored as properties
on the miner instances. For the client to access these results and transmit them to the
central node, the getInterimResult function is called on each miner. Depending on the
miner, the interim results are formatted before they are returned to the client, in order
to maintain a consistent data format across all miners.

In Listing 5.1, the getter method specific to the HTTP Endpoints miner with additional
data formatting is shown. Initially, the results have the format {endpoint: "/",
count: 40}. They are then formatted to {"/": 40}, and returned to the client, which
will transmit the interim results to the central node, using the communication interface.
This data format facilitates data aggregation, since from a programmatic perspective, it
is easier to parse and compare.

class HTTPEndpoints extends AbstractPcapAnalyser {

getInterimResults () {
var interimResult = {}
for (const result of this.results) {
interimResult [result[’endpoint’]] = result[’count’]
}

return InterimResult

Listing 5.1: Getter Method for Interim Results on HTTP-Endpoints Miner

The process of pre-formatting interim results before returning them to the client en-
sures that a consistent data format is maintained across all analysis component instances.
Therefore, an arbitrary number of distributed worker nodes can be instantiated in the
scope of one analysis, and the miners will ensure that the same data format is main-
tained.

5.1.2 Communication Interface

For the baseline architecture of the communication interface, it is established that a client-
server architecture with bi-directional communication is most suitable. The server runs
on the central node, listening on a specific port. Each worker node then runs as a client,
connecting to the server. The bi-directional communication allows for the client to send
metadata to the server, and for the server to orchestrate a set of clients. This provides
the necessary communication interface so that the results of the distributed miners can
be aggregated. To enable this architecture, two Node. js modules are considered, namely
net and socket.I0.

The net module provides an asynchronous network API for creating stream-based TCP
servers and clients [42]. It provides a Server class, which is used to create a TCP server,
and a Socket class, which is an abstraction of a TCP socket that can be created to
communicate with a TCP server. Both classes extend the Node.JS EventEmitter class,
therefore custom events can be defined for a server or socket to listen on, apart from
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the default events (e.g., data, error, connect, close). With respect to the prototype
implemented in this work, there are a few drawbacks to using TCP sockets. First, the net
module is a low-level interface that allows for raw TCP connections. This is sufficient for
a basic implementation of a communication interface between the central node and worker
nodes as part of the analysis component. However, to enable the possibility of integration
with SecGrid’s user interface and visualization module at a later time, a higher-level
networking interface with browser support is preferable. Second, the net module’s TCP
sockets and servers exchange data in the form of either a String or Buffer object. As
defined in the proposed architecture (cf., Figure 4.2), the data should be transmitted in
JSON format, which is a language-independent data exchange format. Therefore, using
the net module, the client would first need to convert the data to be transmitted to a

String object, and upon receiving data, the server would need to parse the String object
back into JSON format.

Socket.I0 is a library that provides bi-directional communication based on the Web-
Sockets protocol [43]. It consists of a server framework implemented in Node.JS, and
a client library for the browser, which can also be run from inside Node.JS. Similar to
the net module’s TCP sockets, the Socket.I0 API leverages the EventEmitter class to
emit events on one side and register listeners on the other side. Other than that, the
Socket.I0 library provides several valuable features that TCP sockets do not support.
For instance, when a client connects to the server, Socket.I0 will try to establish a Web-
Socket connection, and fall back to HTTP long-polling if that’s not possible [43]. The
client library has reconnection support, thus enabling automatic reconnection of a client
to the server. In addition, the Socket.I0 API supports any serializable datastructure as
argument when transmitting data, thus allowing to send data in JSON format without the
need to serialize JSON objects beforehand. Given the advantages the Socket.I0 library
presents compared to the net module’s TCP sockets, it is established that the Socket.I0
library is used for the implementation of the communication interface.

Listing 5.2 demonstrates the usage of a Socket.IO server on the central node. This
snippet shows the principle of the EventEmitter class that the Socket.I0 library makes
use of. An event listener is registered with the on keyword, and its callback is called when
the client emits said event with the emit keyword. In the code snippet, the io variable
represents a Socket.IO server instance. The connection event listener is registered
on the server instance, thus the code snippet ranging from Line 5 to 16 is executed
every time a client connects. The connection event is one of the built-in events that
Socket.I0 automatically emits whenever a client instance connects to a server instance.
Upon connection, multiple custom event listeners are registered on the socket to listen on
events emitted from the client. For instance, on Line 5, the event called interimResult
waits for metadata sent by the client, and the post-parsing analysis is run upon receiving
the metadata. On Line 9, after handling the received interim results, the connection to the
client is closed, since it is not needed anymore. After all the listeners specific to the client
have been registered, the socket emits an event called ack to the client, acknowledging
the connection the client has attempted. Lastly, on Line 19, the server is instructed to
listen on port 3000 for incoming connections.

In Listing 5.3, the connection of a worker node to the central node as well as the data
transfer between the nodes is highlighted. First, the client connects to the server, which is
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implemented in the createSocketClient function on Lines 6 to 15. In this code snippet,
the io variable represents a Socket . I0 client instance. If the connection attempt succeeds,
a socket (in this code snippet called client) is initialized. The socket then registers a
listener on the ack event, which the server emits as soon as the connection is established
(cf., Listing 5.2, Line 16). After that, the worker node sets up the miners and runs the
analysis, which will produce interim results in the form of extracted features. On Line
4, the interim results are sent to the central node using the Socket.I0 communication
interface. For that, the EventEmitter and a custom event called interimResult are
used, for which an event listener has been registered on the central node.

async function initializeServer () {
io.on(’connection’, (socket) => {
socket.on(’interimResult’, async (interimResult) => {
// handle interim results

runPostParsingAnalysis(interimResult, currentPcapFilePath)

socket .disconnect ()

»

socket.on(’disconnect’, (reason) => {
console.log(reason)

B

socket.emit(’ack’) // Signal to the worker
b

server.listen (3000, () => {
console.log(serverInfo)
b
}

Listing 5.2: Orchestrating Communication on the Central Node

var client = await createSocketClient ()
await setUpMiners (miners)

var interimResult = await runMiners (miners)
client.emit(’interimResult’, interimResult)

async function createSocketClient () {
return new Promise(function (resolve) A{

var client = io.connect ()
client.on(’ack’, () => {
resolve (client)
»
i)

}

Listing 5.3: Worker Node Connecting to the Interface Provided by the Central Node

The implementation of the communication interface enables the distributed analysis of
datasets. Multiple instances can launch the analysis component as a worker node and




0O Ui Wi+

—
W N~ OO

5.1. IMPLEMENTATION OF KEY COMPONENTS 27

connect to the central node. The interface also provides a first step towards collabora-
tion. Multiple actors can collaborate by spawning a worker node for each actor, and by
connecting to a mutual central node. In addition, by leveraging the feature of running
an analysis on multiple worker nodes simultaneously, the workload of analysing a large
dataset can be split up onto multiple instances instead of running the analysis on a single
node, which increases the scalability of the process. However, to enable collaboration and
the distribution of workload, a data aggregation mechanism needs to be in place.

5.1.3 Metadata Aggregation

In order to create a clear outline of the aggregation mechanism, the assumption is made
that in any case, the data to be aggregated is distinct. In other words, it is assumed that
no two datasets that are to be analysed in the same analysis instance contain identical
network traffic. This assumption is made to ensure that no distorted perspectives are
generated when contemplating the aggregated features.

class HTTPEndpoints extends AbstractPcapAnalyser {
static aggregateResults (resultA, resultB) {
for (var key in resultA) {
if (resultB.hasOwnProperty(key)) {
resultB[key] += resultAl[key]
}
else {
resultB[key] = resultAl[key]
}
}
return resultB
}
}

Listing 5.4: Sample of a Data Aggregation Function

The data aggregation mechanism is responsible for aggregating the metadata that the
central node receives from worker nodes through the communication interface. In essence,
when receiving metadata via the communication interface, the central node checks whether
it has already received metadata from other worker nodes, and starts the aggregation
mechanism if that’s the case. Since the feature extraction mechanism is specific to each
miner, the mechanism that aggregates the extracted features also needs to be tailored
to the miners’ data structures. For instance, aggregating statistics about the verbs (e.g.,
GET, PUT, POST) used in HTTP requests requires a different aggregation mechanism
than aggregating statistics about the ratio between UDP and TCP packets. This poses
a challenge with respect to the implementation of the aggregation methods, since the
miners are only instantiated on the worker nodes, and not on the central node, where the
aggregation mechanism is run. It is therefore established that the aggregation methods
are implemented as static methods in the miner classes. The results to be aggregated are
passed to the method as arguments. This way, the server instance on the central node
can access the static aggregation method on each miner, without having to instantiate
the miners. Listing 5.4 shows an exemplary implementation of an aggregation mechanism
within the HTTP Endpoints miner. In this case, the method iterates over the entries of
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the first result and checks whether the same key is present in the second result. If so, the
values are summed up, and otherwise a new entry is created.

Within the scope of the prototype implementation, it is shown that this data aggregation
approach is feasible for a variety of miners, covering the link, network, transport, and
application layers with respect to the OSI model. If the method is invoked on a miner
that does not implement the aggregation method, the method will throw a custom NotIm-
plemented Error, which the program flow of the server will catch in order to ensure the
continuous operation of the server instance.

The implementation of the data aggregation mechanism is a crucial contribution to en-
able the analysis of attack data in a collaborative setting. It enables the aggregation
of metadata originating from different datasets, which provides valuable insights for all
collaborators involved. At the same time, the aggregation mechanism ensures that a
consistent data format is maintained, such that the formatting of aggregated data is com-
patible with non-aggregated features, and both can be further processed accordingly. In
addition, the mechanism handles the data aggregation in an automated manner, involving
no manual effort.

5.2 The D-DDoSGrid Prototype

After a first implementation of the key components of D-DDoSGrid is completed, the
D-DDoSGrid prototype is put together. The interaction of the different features during
the analysis workflow is visualized in an activity diagram shown in Figure 5.1. In the
swimlane on the left, the diagram shows a worker node connecting to a central node. The
central node is represented in the swimlane on the right.

The DDoSGrid analysis workflow starts with the central node creating a socket server,
and waiting for a client to connect. When a worker node is initialized, it first prepares
the analysis components, i.e., it initializes the packet decoder, the protocol parser, as well
as a set of miners. After the set up is complete, the worker node creates a socket client,
which attempts to connect to the socket server on the central node. After the connection
is established, the central node emits the startAnalysis event via the communication
interface in order to indicate to the worker node to start the analysis. Upon receiving
said event, the worker node performs the analysis by running the analysis component.
The result of the analysis is a set of interim results in the form of JSON data. Using
the interimResults event, this data is then transferred to the central node through
the communication interface. Upon receiving the interim results, the central node starts
the post-processing mechanism. On the one hand, it starts the post-parsing analysis on
the interim results, which will result in the extracted features. These extracted features
maintain a consistent data format compatible with the original SecGrid data formats. On
the other hand, the central node checks whether it has already received interim results
from another worker node. If so, it triggers the data aggregation mechanism, and in
addition runs the post-parsing analysis on the aggregated data, in order to produce the
aggregated features. These aggregated features can be handled the same way as the
non-aggregated features, since they maintain the same data format.
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Figure 5.1: Initial Implementation of D-DDoSGrid Analysis Workflow
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Thanks to its distributed nature, the analysis workflow is the same for each worker node.
Therefore, multiple clients can connect to the server, either simultaneously or consecu-
tively. The connection interface on the side of the server is kept open unless the execution
of the Node. js script is stopped. Thus, an analysis can be performed in a collaborative
setting even if the points in time where the distributed worker nodes are instantiated are
stretched over a longer period of time.

5.3 Implementation Challenges

In the course of the prototype implementation, some challenges are revealed with respect
to the Socket.I0 communication interface. When analysing large PCAP files (i.e., with
a magnitude of several hundred thousand packets), the packet decoder as part of the
analysis component causes high resource consumption in the form of high CPU load. In
addition, the analysis of large PCAP files results in long runtimes of the packet decoder.
While testing the first D-DDoSGrid prototype, it is discovered that the client-side socket
connection on the worker node can be rendered faulty after a large dataset has been
analysed.

A first potential cause is found in the built-in ping-pong mechanism of Socket.I0, which
works as follows: The server sends a PING packet at a given interval, and the client sends a
PONG packet back. If the server does not receive a PONG packet back after a given amount
of time has passed, it will consider the connection closed [44].

In D-DDoSGrid, the packet decoder component is built on top of the Node.JS Even-
tEmitter class. Listing 5.5 gives a simplified overview over how the correct running order
is ensured. In the analysis workflow, the packet decoder needs to finish (i.e., emit the
complete event) before the analysis workflow can continue with the protocol parser and
running the miners. To ensure this, the await keyword is used. This will ensure that
the protocol parser and miners are only run after the decoding has finished. However,
this keyword will pause the execution of any code dependent on the result of this await
statement, not allowing that code to be executed until the awaited function has completed.

await runPcapDecoder (emitter, target)

// 0nly run Protocol Parser and Miners after decoding has finished
runProtocolParser ()
runMiners ()

async function runPcapDecoder (emitter, target) {
emitter.startPcapSession(target)
emitter.on(’complete’, () => {
console.log(‘Decoding has finished. ‘)

}
¥

Listing 5.5: Packet Decoder built on EventEmitter
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It is therefore initially assumed that the socket client is not able to respond to the PING
packet it receives from the server while awaiting the packet decoder to finish. This can
cause issues when large datasets are analysed and the packet decoder requires a long
enough time to finish. In fact, it is assumed that if the runtime of the packet decoder is
longer than the amount of time the socket server waits for the PONG packet of the socket
client, the connection is closed. This is derived from the assumption that the client-side
Node. JS runtime is paused during the packet decoding and is therefore not able to respond
to the server-side PING packet.

To solve this problem, the default values of the pingInterval and pingTimeout values
of the socket server are increased. The first value determines how often the PING packet
is emitted, and the latter value defines how long the server will wait for the PONG packet
to be emitted by the client. By increasing these values, it is expected that the server will
not close the connection prematurely.
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Event results Event
|
See Figure
5.1

Figure 5.2: Adapted Implementation of D-DDoSGrid Analysis Workflow

However, the issue persists after these countermeasures are taken. After further careful
inspection, it is established that the issue arises only in cases where the packet decoding
process takes up 99% or more of the available CPU capacities. Therefore, it is assumed
that what renders the socket connection faulty is the high CPU load the packet decoder
causes, rather than the potentially long runtime. It is important to note that the size of
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a dataset is not necessarily the sole indicator of how much computing power the packet
decoder requires, since this could also be dependent on the type and composition of the
packets to be analysed, or other metrics.

The issue is bypassed by adapting the analysis workflow of the worker node. The updated
D-DDoSGrid analysis workflow is depicted in Figure 5.2. On the adapted worker node,
the decoding of the packets occurs before the socket client establishes a connection to the
server on the central node. While this mitigates the underlying problem, this is not an
ideal solution since it limits the orchestration possibilities of the central node over the
worker node. As part of future work, the architecture of the worker node could be split
up such that the analysis component and the socket client run in independent processes.
That way, the high consumption of computing power of the packet decoder might not
affect the connection stability of the socket client.



Chapter 6

Evaluation

In this chapter, the implementation of D-DDoSGrid and its added value are evaluated
using case studies. The fulfillment of the system requirements defined in chapter 4 is
investigated on the basis of these case studies. In addition, the scalability and performance
of the D-DDoSGrid architecture is evaluated by observing the process of analysing a large
PCAP file.

6.1 Case Studies

For this section, three case studies have been designed in order to cover multiple possible
use cases that validate the D-DDoSGrid architecture and its main features. The first case
study involves the usage of the D-DDoSGrid prototype as a post-mortem analysis tool
for multi-vector DDoS attacks. In the second case study, it serves as a tool for compar-
ing attack data of multiple independent collaborators. Lastly, D-DDoSGrid enables the
approach of federated learning in order to classify DDoS attacks in the third case study.

6.1.1 Analyzing a Multi-Vector DDoS Attack

In this case study, the employment of the D-DDoSGrid prototype is considered in the
context of analysing DDoS attacks in a post-mortem fashion. The goal of this scenario
is to illustrate how attack data from multiple data sources are aggregated in order to
gain additional perspectives. The specific scenario looks as follows: It is assumed that
multiple components of a service hosted on the web are affected by a multi-vector DDoS
attack. An application layer attack on the web server and a transport layer attack are
observed. The attack vector executed against the web server is a HTTP POST flood
attack, and the transport layer attack vector is a SYN flood attack. The operators of the
service are in possession of packet captures from both servers, which were recorded during
the attack. To illustrate this scenario, sample captures of both a HT'TP POST flooding
attack and a SYN flood attack are used. Both are packet captures of real-world DDoS
attacks, retrieved from an open-source repository on GitHub [45]. Some of the attack
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Figure 6.1: Data Sharing and Data Aggregation Workflow

data, such as source or destination IP addresses, has been anonymized, and therefore, the
data displayed should be considered for illustration purposes only.

In this scenario, the service operators wish to analyse the secured attack data and derive
knowledge from it. First, examining the captures separately provides information about
characteristics specific to each attack. For instance, the different API endpoints targeted
as well as the distribution of HT'TP verbs used during the attack are of importance when
classifying the application layer attack. Similarly, the ratio of UDP to TCP packets as well
as the frequency of the various TCP flags (SYN, ACK, FIN) are relevant when analysing
the transport layer attack. Secondly, the prototype developed in this work can be utilized
to aggregate the attack data and gain additional insights. For instance, an aggregated view
of the most common source hosts IP addresses provides insights on the distribution of the
attack sources, and on whether the attacks are correlated. Alternatively, an aggregated
view on the combinations of browsers and operating systems (OS) gives an insight on
whether the attacks were launched using a botnet.

Using the prototype of this work, the two servers on which the attacks occurred act as
worker nodes that send critical metadata to a central node, which in this scenario is the
personal device of one of the service operators. The worker nodes analyse the attack
data using the miners implemented by SecGrid, which results in metadata formatted in
JSON data. This data is then sent to the central node for an initial analysis and further
processing. In contrast, other approaches require to send the full attack data in the form
of packet captures to the central entity, where that data is aggregated manually, which
results in lower scalability and higher manual effort. In Figure 6.1, an overview of this
constellation and the transfer of metadata is given. The component labeled Worker Node
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A represents the server targeted by a transport layer attack vector, along with the packet
capture containing attack data. The component labeled Worker Node B represents the
web server containing attack data from the application layer attack vector, respectively.
The Central Node component represents the service operator receiving the metadata,
in JSON format, originating from the worker nodes, as well as the aggregated metadata.
With respect to attack data related to the application layer attack, the relevant metadata
is shown in Listing 6.1. This data shows that the majority of the HTTP verbs used
in requests were of the type POST, and all requests were made on the same endpoint.
Therefore, the operators determine that the attack was probably of the type HTTP POST
flooding.

{
GET: 94,
POST: 125,
HEAD: O,
PUT: O,
DELETE: O,
PATCH: O,
},
{
n/n. 219,
+

Listing 6.1: Traffic Metrics Indicating HT'TP Verbs and Endpoints

Similarly, the operators derive knowledge from the metadata analysed on the server with
respect to transport layer traffic, shown in Listing 6.2. The data shows that only TCP
packets and no UDP packets were sent. Furthermore, all TCP packets hold the SYN flag.
Therefore, it appears likely that the attack can be categorized as a SYN flooding attack
vector.

{
nr0fUDP: O,
nr0fTCP: 37841,
Fo
{

nr0fPacketsInSynState: 37841,
nr0fPacketsInSynAckState: O,
nr0OfPacketsInFinState: O,
nrO0fPacketsInFinAckState: O,
nr0fPacketsInAckState: O,
nrO0fPacketsInRemainingStates: O,
nr0fTransportPackets: 37841,

Listing 6.2: Traffic Metrics Indicating UDP vs TCP Ratio and TCP States

The post-processing procedure of metadata includes formatting the metadata such that it
can be fed into the visualization mechanism of SecGrid, as well as aggregating metadata
from multiple independent worker nodes. The aggregated data provides an overview of
the attacks and potentially opens a new perspective with respect to the correlation of
the attacks. The service operators look at the aggregated source host IP addresses to get
an overview of the various attack sources, the amount of packets originating from these
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sources, and possibly their geographic location. In Listing 6.3, the top 15 source hosts,
along with the number of packets sent from these sources are shown. The expression
top N source hosts is defined as the N source hosts that sent the largest amount of TP
packets. From this data, the service operators derive that some hosts were sending large
numbers of packets, implicating that these requests were made automatically as opposed
to manual requests made by legitimate users. Additionally, the non-aggregated data is
compared to check if some of the source hosts were involved in both attacks.

{
"8.8.8.8": 6430,
"10.0.0.2": 1429,
"10.128.0.2": 1002,
"8.8.4.4": 847,
"212.8.51.69": 750,
"212.8.51.71": 555,
"212.8.51.72": 414,
"212.8.50.179": 414,
"212.8.51.99": 408,
"146.120.160.133": 324,
"212.8.51.140": 315,
"212.8.50.158": 312,
"1.1.1.1": 250,
"212.8.51.120": 240,
"212.8.50.188": 210,

}

Listing 6.3: Aggregated Traffic Metrics Indicating Top 15 Source Hosts

Finally, since both the non-aggregated as well as the aggregated metadata is stored on
the central node, the service operators can further explore the provided data according
to their specific needs to get as much insight as possible about the attack. In contrast,
deriving the same knowledge with related approaches would entail copying large amounts
of data and processing it manually.

6.1.2 Comparing Attack Data of Multiple Independent Devices

This case study investigates an approach that uses D-DDoSGrid to analyse and compare
cyberattacks of the same type, originating from multiple independent hosts. Specifically,
it is assumed that multiple independent devices store packet captures recorded during
SSH brute force attacks. The SSH brute force attack is a common attack vector based
on which the attacker attempts to gain access to a remote device by guessing username
and password combinations on the SSH interface [46]. SSH brute forcing is a prevalent
attack vector since systems can easily be compromised if lax security measures are in place
[47], especially due to the increase of IoT devices, where default username and password
combination (e.g., admin/admin or root/root) are not changed.

In this scenario, multiple independent device administrators wish to compare the attack
data they collected on the affected devices. This administers not only the process of
deriving knowledge about the attack their devices are affected by, but also gaining insights
on other SSH brute force attacks. As a consequence, additional perspectives on the attack
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vector are gained. This in turn enables deriving suitable defense mechanisms against SSH
brute force attacks, such as traffic filtering or limiting connection rates [47]. Concretely,
the administrators of these devices wish to investigate the source hosts involved in SSH
brute forcing, not only on their own devices, but across all devices that are part of this
scenario. This enables multiple perspectives on the geographic distribution of the source
hosts.

Two real-world datasets, in the form of packet captures, have been generated to use for
the visualizations of this case study. Both datasets were recorded using Virtual Machines
(VM) running Ubuntu, located in Helsinki. Both datasets were recorded over a time span
of approximately 18 hours. To capture the traffic, the tcpdump [48] software was used
with the following command:

$ tcpdump -i enp3s0 port 22 and src net not 65.108.0.0/16

With this command, only port 22 and inbound packets were considered (i.e., traffic origi-
nating from the management network is excluded), everything else was dropped. Since no
other SSH traffic was moving to or from this host, it can be assumed that all packets were
malicious and targeting the SSH brute force vector specifically. The command output was
written into PCAP files. For the sake of simplicity, this case study assumes that there
are two worker nodes connecting to the central node. However, in practice, this scenario
works for any number of distributed worker nodes.

Using the D-DDoSGrid prototype, the devices in possession of the packet captures act as
distributed worker nodes, and use the miners to analyse the PCAP files. The worker nodes
then connect to a central node and transmit the metadata resulting from the analysis to
the central node. On the central node, the metadata is further processed, and the results
originating from the separate worker nodes are aggregated. In this scenario, the non-
aggregated data is more relevant than the aggregated data, however the aggregated data
is still considered. To enhance the ability to compare the extracted features, the data
stored on the central node is fed into the visualization system of SecGrid. For instance,
using a pie chart simplifies the analysis of the most common source hosts, i.e., the source
hosts that sent the largest number of packets, and a world map highlights their geographic
location. While the same conclusions about the data would be made if the data is analysed
in JSON format, the visualizations support human knowledge derivation.

The attack metrics and visualizations resulting from the analysis of the two datasets are
depicted in Figure 6.2. Each row represents attack data from one of the attacks (i.e.,
datasets), labelled Node A and Node B, respectively. From the metrics tab on the left
it becomes apparent that a large amount of packets were sent to both hosts, originating
from a variety of source IP addresses. The following two visualization tabs represent
the top N source hosts, meaning the N source hosts that sent the largest amount of
IP packets. The world map visualizations of the top 100 source hosts highlight the fact
that the geographic locations of the source hosts are similar in both attacks, with the
majority of packets originating from India, Russia, and China. Additionally, the pie chart
visualizations reveal that the most common source hosts are different. With respect to
the first attack (Node A), the majority of packets originate from a host in Russia, whereas
the attack sources of the second attack (Node B) are more distributed, with three hosts
in China and Hong Kong combined, and one each in India and Russia.



38 CHAPTER 6. EVALUATION

SSH Inbound Node A Top 100 sources by Top 5 sources by traffic
Dataset (b98e6..0c2cd) ‘ trafﬂc ‘ .

M 45.141.84.126 (45.141.84.0/24, AS206728, RU)

METRICS VISUALIZATIONS BN 112.85.42.73 (112.80.0.0/13, AS4837, CN)
112.85.42.28 (112.80.0.0/13, AS4837, CN)
N 223.229.161.45 (223.229.160.0/19, AS24560, IN)

Duration 19 hours M 112.85.42.71 (112.80.0.0/13, AS4837, CN)
Number of Packets: 21837
Attack Size 3MB
Number of Packets 21837
Number of Source IPs 83

Please note that the world map above only shows the
Number of Source Ports 1446 origin of the top N source hosts!

Number of Destination IPs 1
Number of Destination Ports 3
Proportion of HTTP traffic 0.00%
Proportion of ICMP traffic 0.00% v omi X

X mi X
SSH Inbound Node B Top 100 sources by Top 5 sources by traffic
Dataset (d6d25..4cc27) * trafﬂc u *
f(“”? «(';%} o - q BN 103.165.90.80 (103.165.90.0/24, AS141866, IN)
METRICS VISUALIZATIONS ab;gg/i\ e ha f\} o W 43.224.29.19 (43.224.29.0/24, AS136209, HK)
Zf};& a"\J\ . 45.141.84.10 (45.141.84.0/24, AS206728, RU)
B 218.92.0.221 (218.92.0.0/16, AS4134, CN)
Duration 18 hours M 61.177.172.89 (61.177.0.0/16, AS4134, CN)
Number of Packets: 7015
Attack Size 1MB
Number of Packets 7015
Number of Source IPs 62

Please note that the world map above only shows the
Number of Source Ports 622 origin of the top N source hosts!

Number of Destination IPs 1
Number of Destination Ports 2

Proportion of HTTP traffic 0.00%

Proportion of ICMP traffic 0.00% v omi X

Figure 6.2: Attack Metrics and Source Hosts Visualizations

In Figure 6.3, the aggregated data of the two datasets is shown. When looking at the
world map visualization of the aggregated top 100 source hosts, the large amount of
malicious packets originating in Russia and China is highlighted, and the perspective on
the geographical distribution of the overall traffic is maintained. However, some insights
get lost. For instance, one of the top 5 source hosts of node A and one of node B originate
from the same autonomous system (AS) (i.e., they hold the same AS number), implying
that these source hosts are interrelated. When looking at the aggregated top 5 source
hosts visualization, this insight is lost. In order to maintain this perspective, a larger
subset of the aggregated data needs to be considered (i.e., consider the top 10 or top
20 source hosts instead). In conclusion, whether or not considering the aggregated data
visualizations in addition to the separate visualizations offers additional insights on the
data is dependent on the type of visualization and on the size of the subset of aggregated
data that is considered.

Due to the direct comparison of attack data this approach enables, administrators gain
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Figure 6.3: Aggregated Source Hosts Visualizations

enhanced insights about the characteristics of SSH brute force attacks. For instance,
multiple perspectives on the source locations of malicious traffic facilitate the process of
traffic filtering. Additionally, comparing the number of malicious packets sent to the device
brings to light approaches on how to limit connection rates. Both measures constitute
effective defense mechanisms against SSH brute force attacks. In order to achieve a direct
comparison with other approaches, administrators first need to manually exchange the
datasets. The various datasets then need to be analysed separately, and a mechanism
needs to be in place that can contrast the analysis results with each other. Since most
approaches don’t offer functionality that allows for the direct comparison of multiple
datasets, this would also need to be done manually in most cases. In addition, to get
insights on the aggregated data as well, the data would need to be aggregated manually.

6.1.3 Federated Learning

Federated learning is a machine learning technique that trains a model across multiple
decentralized nodes with local data samples, without exchanging them between the nodes
[49]. This concept provides a distributed alternative to centralized machine learning ap-
proaches where multiple datasets are uploaded to one central instance [49]. Additionally,
potentially sensitive data is contained on the original nodes, and not distributed.

In this use case, the D-DDoSGrid prototype is used to implement the centralized federated
learning approach. This means that a central server is responsible for coordinating the
distributed nodes and aggregating the updated models, in contrast to the decentralized
approach, where no central node is needed and the nodes are able to coordinate them-
selves [49]. Specifically, instead of gathering a lot of network data on the central server,
the central server distributes a model to the nodes. Then the nodes use that model to
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Figure 6.4: Centralized Federated Learning Workflow Using Network Traffic Data [49]

learn from their observed network traffic. Finally, just the updated models need to be
sent to the central server where they can be aggregated. The workflow of this technique
is illustrated in Figure 6.4.

In this scenario, the model to be trained is a model that detects whether a DDoS attack
has taken place, i.e., it classifies whether the input data bears attack signs. The central
node is in possession of a statistical model, and the decentralized nodes are in possession
of packet captures, recorded during DDoS attacks. These packet captures are now used to
train the statistical model. The prototype developed in this work is leveraged for several
tasks of this scenario. The distributed architecture and the communication functionality
implemented in this work are used for the orchestration of the central node and the
distributed nodes, as well as the communication between the nodes. This corresponds to
step 1 and step 3 in Figure 6.4. Furthermore, the data mining process which generates
input data for the machine learning model is done by using the miners implemented in
SecGrid. This corresponds partly to step 4 in Figure 6.4. In order to generate input vectors
for the model, the machine learning feature extraction miner implemented in SecGrid is
used. The miner extracts features from the packet captures on the nodes and stores them
in CSV format, in contrast to the conventional miners of SecGrid that store extracted data
in JSON format. Using the networking implemented in this work, the updated models are
sent back to the central node, and the distributed nodes disconnect automatically. After
the central node has aggregated the updated models, further iterations of the workflow can
follow. For this, the workflow restarts at the first step, and the central node distributes
the updated model to different nodes, containing different network traffic data. With the
implemented prototype, this is simply done by connecting a new set of distributed nodes
to the central node using the networking interface.

In conclusion, the approach of using D-DDoSGrid for the centralized federated learn-
ing techniques generates added value in comparison to conventional centralized machine
learning techniques in several aspects. For instance, data privacy is improved in situations
where sensitive data, e.g., network traffic data that contains IP addresses, is used to train
statistical models. Only the updated model is transmitted to the central node instead of
the dataset containing the sensitive data, therefore maintaining privacy. Another advan-
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tage is the limited demand of bandwidth with respect to the network connectivity between
the central node and the distributed nodes. Transmitting only the updated model and
not the entire dataset to the central node implies transmitting smaller amounts of data
at a time.

6.2 Scalability and Performance Evaluation

In this assessment, the scalability of analysing a large PCAP file using the D-DDoSGrid
prototype is evaluated. To do so, it is assessed whether the distributed aspect of the
D-DDoSGrid architecture can increase performance in terms of time needed to perform
the analysis, compared to the centralized SecGrid architecture.

For this evaluation, a large PCAP file is first analysed using the current SecGrid analysis
component. Then, the same file is analysed using the distributed D-DDoSGrid analysis
component. The PCAP file used is a packet capture of a SYN-flood attack, containing
17390995 packets, with a file size of 97.4 MB. The evaluation is performed on a machine
with 6 CPU cores and 16GB RAM. To measure the runtime of the analysis, the point in time
at which the analysis is started is measured. After the packet decoder, the protocol parser
and the miners have finished, another timestamp is measured. The two timestamps are
then subtracted to obtain the analysis duration in seconds, and the results are written to
the console.

Analysis started
Setup of the following miners has completed:
- Miscellaneous Metrics
- Connection states of TCP segments
- Ratio between UDP and TCP segments
Decoding has started...
Decoding has finished (101.596s), starting post-parsing analysis

Listing 6.4: Performance with SecGrid

The output of the analysis iteration with SecGrid is depicted in Listing 6.4. For this
analysis, three miners that are relevant to the SYN-flooding based attack are initialized.
The output on Line 7 indicates that the analysis runtime amounts to 101.596 seconds.

Now, the dataset is analysed using the D-DDoSGrid prototype. The dataset is split into
two separate datasets of equal size, in order to distribute the workload onto two worker
nodes. To do so, the following command is used:

$ editcap -c 695498 SYN-flooding.pcap SYN-flooding-split.pcap

With this command, the packet output of the file SYN-flooding.pcap is split to different
files with a maximum of 695498 packets each. This command will result in two PCAP
files, one containing 695498 packets, and the other containing 695497 packets. Both files
have a size of 61.2 MB. The worker nodes run the analysis simultaneously and connect to
the same central node, where the metadata produced by the worker nodes is aggregated.
In addition, with the time command, the runtime of the operation is measured:
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$ time editcap -c 695498 SYN-flooding.pcap SYN-flooding-split.pcap
0.64s user 0.36s system 86% cpu 1.149 total

The output of this command on Line 2 indicates that the runtime of splitting the given
dataset into two equally large datasets equals 1.149 seconds.

Setup of the following miners 1 |Setup of the following miners
has completed: has completed:
- Miscellaneous Metrics 2 - Miscellaneous Metrics
- Connection states of TCP 3 - Connection states of TCP
segments segments
- Ratio between UDP and TCP 4 - Ratio between UDP and TCP
segments segments
Analysis has started... 5 |Analysis has started...
Decoding has started... 6 |Decoding has started...
Decoding has finished (51.09s), 7 |Decoding has finished (50.699s),
sending interim results to sending interim results to
central node... central node...

Figure 6.5: Performance with Two D-DDoSGrid Worker Nodes

The output of the analysis iterations with D-DDoSGrid is depicted in Figure 6.5. First,
it is observed that both worker nodes produce a very similar analysis runtime. Second, a
linear runtime development with regard to the SecGrid analysis iteration is observed, u.e.,
analysing half of the number of packets with D-DDoSGrid results in halt of the runtime.
However, the distributed worker nodes are run simultaneously, and the aggregation mech-
anism on the central node ensures that the metadata of the individual worker nodes is
aggregated. Therefore, the complete analysis workflow runtime is approximately halved
when utilizing the D-DDoSGrid architecture using 2 worker nodes.

Analysis Performance
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Figure 6.6: Summary of Analysis Runtimes

A summary of the runtimes given the various analysis iterations is depicted in Figure 6.6.
The runtimes depicted for the two D-DDoSGrid worker nodes (i.e., Worker1 and Worker2)
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consist of the sum of the analysis runtime and the editcap runtime. In conclusion, these
initial tests suggest that the distributed aspect of D-DDoSGrid may improve the perfor-
mance of analysing large datasets by providing the possibility to distribute workload onto
multiple worker nodes. This is especially useful in use cases where multiple datasets are
analysed. Using the D-DDoSGrid architecture, a worker node can be initialized for each
datasets, providing a scalable approach for collaboration. In contrast, other approaches
require to manually collect and aggregate multiple datasets on a central device, which
can result in large amounts of data, and then perform an analysis using the aggregated
dataset. That being said, it is important to note that more extensive testing needs to
be done for a more accurate picture of the D-DDoSGrid performance. For instance, the
overhead of the communication between nodes, as well as the aggregation mechanism
needs to be considered. In addition, experiments can be performed in order to determine
whether increasing the number of worker nodes further decreases the analysis runtime.
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Chapter 7

Conclusion and Future Work

The main objective of this thesis was the improvement of an existing post-mortem DDoS
attack visualization and analysis tool. By enabling the distributed and collaborative
analysis of cyberattacks, this thesis addresses the lack of collaborative network traffic
processing tools for DDoS attack analysis and protection services present in research and
industry.

The theoretical background necessary to define the key features of such a tool was estab-
lished by analysing the topics of DDoS attacks and their mitigation, as well as the process
of using network traffic analysis as an approach for the analysis of cyberattacks. Further-
more, the implementation and components of SecGrid, whose functionality was extended
in this thesis, was thoroughly investigated. With the necessary theoretical background at
hand, a review of five existing network analysis tools that can be leveraged as post-mortem
DDoS attack analysis tools was performed, and these tools were then analysed based on
a set of criteria such as usability, scalability, and support for collaboration. Based on
this analysis, it was established that none of these tools provided the option for multiple
actors to perform cyberattack analyses on the basis of network traffic in a collaborative
setting. This confirmed the motivation to develop such a tool in a distributed setting.

The review of tools together with the technical knowledge about SecGrid allowed for
the synthesis of a feasible architecture for the development of the prototype, called D-
DDoSGrid. The key properties of this architecture include distributed computing, col-
laborative cyberattack analysis, and scalable feature extraction. With the D-DDoSGrid
architecture proposed, a prototype was then implemented, taking into consideration the
previously mentioned key properties. The prototype was evaluated by considering its fea-
tures in the context of multiple case studies. These case studies involved the usage of the
D-DDoSGrid prototype as a post-mortem analysis tool for multi-vector DDoS attacks,
as a tool for comparing attack data of multiple independent collaborators, and as a tool
enabling the approach of federated learning in order to classify DDoS attacks.

In conclusion, the evaluation suggests that the implementation of the prototype fulfills the
key features defined in the D-DDoSGrid architecture. The case studies showed that the
prototype can be used for the distributed and collaborative analysis of cyberattacks, while
preserving the scalability of the SecGrid system, thus validating the overall approach of
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this thesis. During the implementation and evaluation phase, domains were established
in which the provided prototype can be further developed as future work. For instance,
as of now, the prototype is only accessible via CLI. Therefore, the integration of the D-
DDoSGrid architecture into the user layer of the SecGrid system would provide an increase
in usability, and further encourage collaboration. A web interface could be envisioned on
which multiple collaborators can interact with the analyses provided by the D-DDoSGrid
prototype. Furthermore, the data aggregation component could be extended with a mech-
anism that is able to detect whether the attack data present in multiple datasets is related
or not, and then aggregate the data accordingly. As of now, the aggregation mechanism
is implemented under the assumption that the data to be aggregated is always distinct,
thus excluding some use cases. Additional future work with respect to collaboration could
be visualizations specific to aggregated data. For instance, visualizations that take into
account the individual sources of the datasets could reveal new perspectives as opposed
to visualizations that only show the aggregated data as a whole.
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Appendix A

Installation Guidelines

This appendix provides information necessary to run the D-DDoSGrid prototype. The
following instructions have been tested in a MacOS environment as well as on a Debian
VM, and should be compatible with other distributions.

Prerequisites

1. The source code of this project, available on GitHub:
https://github.com/demaerl/ddosgrid-v2

2. The necessary libraries and tools to build and run this project:

e Node.js
e npm

e libpcap

Build and Run Prototype

Enter the miner subproject and install the necessary dependencies:

cd miner
npm i

After that, the central instance can be run through a shell:

node index. js

The server will then wait for nodes to connect:

Server listening on *:3000. Waiting for client to connect...

To connect a worker node, the path to a PCAP file needs to be passed as argument.

node worker.js pcap_path=’/path/to/pcap_file_ A’
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This will run the miners and transmit the results to the central instance.
The output of the worker node will look as follows:

Checking input values...
Setup of the following miners has completed (0.001s):
- Miscellaneous Metrics
- Top 20 UDP/TCP ports by number of segments
- Ratio between UDP and TCP segments
- Analysis of IPv4 vs IPv6 traffic (based on packets)
- Top 5 source hosts (IPv4)
- Most used HTTP verbs
- Top 10 most used Browser and 0S Combinations
Analysis has started...
Decoding has started...

0.001 * 106 PCAP packets analysed. Current Heap Memory usage:

20MB

Decoding has finished (0.768s), sending interim results to server...

The output of the central node will look as follows:

A client connected. ID: 9ULJO3Vc-C6J2uKUAAAB

Received interim result from client (ID: 9ULJ03Vc-C6J2uKUAAAB) .

Starting post-parsing analysis of interim result...

Post -parsing analysis has completed. The results are available at
/to/pcap_file_directory/’

> /path

A client disconnected. Reason: server namespace disconnect. ID: 9ULJ03Vc

-C6J2uKUAAAB

To connect additional worker nodes, use the same command as above:

node worker.js pcap_path=’/path/to/pcap_file_B’



Appendix B

Contents of the CD

1. This thesis as PDF

2. This thesis as IXTEX source in a .zip file
3. Midterm presentation slides as PDF

4. The source code of this thesis

5. The datasets used for the evaluation, in a directory called datasets
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