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Abstract

The field of automatic face recognition has experienced a significant boost in recent years since the
use of artificial neural networks was introduced. Face recognition today poses a critical element
for everyday life, supporting various tasks from security, surveillance, and access control all the
way to unlocking smartphones. In many different situations, such as changing illumination and
faces covered with scarfs or glasses, recognition networks have come to shine and achieve the
most accurate results. However, when it comes to recognizing faces from a far distance, they
start struggling and leave room for improvement. This thesis discusses the usage of a reference
database. Images are compared to it, resulting in a signature. Then, rather than comparing a probe
image directly to the gallery, their signatures are compared. The idea of rank lists is set side-by-
side with the standardization of those signatures to evaluate whether more accurate results can
be achieved. However, for all experiments, results show that the usage of a reference database
does not outperform the direct comparison. Further research using more extensive databases and
various network models is needed to ensure which approach is more accurate.





Zusammenfassung

Der Bereich der automatischen Gesichtserkennung hat in den letzten Jahren einen grossen Auf-
schwung erlebt, seit die Verwendung künstlicher neuronaler Netzwerke eingeführt worden ist.
Die Gesichtserkennung stellt heute ein Schlüsselelement des täglichen Lebens dar und unter-
stützt verschiedene Aufgaben von der Sicherheit, Überwachung und Zugangskontrolle bis hin
zur Entsperrung von Smartphones. In vielen verschiedenen Situationen, wie z.B. bei unter-
schiedlichen Beleuchtungsverhältnissen sowie bei bedeckten Gesichtern, haben sich Netzwerke
bewährt und erzielen die genauesten Ergebnisse. Wenn es jedoch um die Erkennung von Gesich-
tern aus grosser Entfernung geht, mangelt es an Genauigkeit. In dieser Arbeit wird die Verwen-
dung einer Referenzdatenbank diskutiert, mit der die Bilder verglichen werden, um eine Signatur
zu erstellen. Anstatt ein Probebild direkt mit der Galerie zu vergleichen, werden jene Signaturen
verglichen. Die Idee der Ranglisten wird mit der Standardisierung dieser Signaturen in Kontrast
gestellt, um zu bewerten, ob genauere Ergebnisse erzielt werden können. Bei allen Experimenten
zeigt sich jedoch, dass die Verwendung einer Referenzdatenbank den direkten Vergleich nicht
übertrifft. Weitere Untersuchungen mit grösseren Datenbanken und verschiedenen Netzwerk-
modellen sind erforderlich, um sicher zu sein, welches der genauere Ansatz ist.
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Chapter 1

Introduction

Facial recognition today is so firmly anchored in everyday life that it is barely noticed anymore.
People simply unlock their devices such as smartphones and laptops simply by looking at them,
and pictures of the same person are naturally grouped in galleries. Furthermore, airports rely on
face recognition for border control. As one of the most significant usages, surveillance cameras
are installed for monitoring and providing security, identifying criminals or missing people (Masi
et al., 2018). For its many applications, it is therefore of great importance that face recognition
systems are robust, accurate, and efficient.

Given its many advantages, especially for law enforcement, research on facial recognition is
pushed heavily (Zhao et al., 2003). And rightly so, since even though face recognition systems
have matured to a particular level, researchers agree that their performance and success are still
heavily limited by certain real-world situations. In controlled environments, recognition systems
outperform human abilities (O’Toole et al., 2007). That is, using images with perfect illumination
with the subject’s head turned to the front and with no facial expressions or background noise.
In everyday life, however, this situation is not very likely to exist. Surveillance cameras usually
record people from an elevated position. Hence people’s heads are rarely turned to the camera.
People like to wear sunglasses and hats in summer and scarves in winter, covering crucial parts
of their faces. Furthermore, a person’s face is not printed in stone but changes with age. Peo-
ple’s faces express emotions and therefore are rarely neutral. Finally, depending on the time of
day and artificial lighting, illumination greatly varies, making it challenging to recognize facial
characteristics.

Consequently, it is not surprising that face recognition systems perform worse in uncontrolled
environments. For a significant part, the human visual system can easily separate identities no
matter how the factors mentioned above change. Because of the many faces people are confronted
with throughout their life, their visual system is extensively trained (Müller et al., 2013). Mean-
while, automatic face recognition systems have progressed so far, that differences in poses as well
as occlusions (i.e., scarfs and sunglasses) practically do not impact the results (de Freitas Pereira
et al., 2022). However, achieving similar efficiency using automatic face recognition is a challenge
yet to be tackled concerning other areas such as when working with low-resolution footage.

Over the years, there have been many different approaches. Traditional ones include algo-
rithms such as Linear Discrimination Analysis, Principal Component Analysis and Local Gabor
Binary Pattern Histogram Sequence. However, the most accurate results have been achieved since
the introduction of machine learning. Artificial neural networks are trained with thousands of im-
ages to extract facial characteristics (i.e., features) to gain the ability to recognize complex abstrac-
tions of faces (Wang and Deng, 2021). Since the breakthrough in 2012 described by Krizhevsky
et al. (2012) in deep learning, the field of face recognition has been dominated by neural networks.

The research on image databases for training such networks is a whole branch itself. Much
previous work is published using proprietary databases and is therefore difficult to verify. Re-
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searchers such as Grgic and Delac1 work towards publicly available ones, which additionally
define evaluation protocols that declare which images are used for training or evaluation. Exper-
iments made using such open-source databases are re-runnable and verifiable, which poses a
significant advantage for future work.

Facial recognition can be divided into two parts: identification and verification. For both
applications, different databases have to be considered. Identification describes the process where
the identity of a recorded subject is deciphered by comparing the image to a gallery. This is the
typical application performed by surveillance cameras which, for instance, record and identify
people who want to access a restricted area. Verification, on the other hand, deals with validating
whether people indeed are who they claim to be. For instance, Uber drivers are asked to take a
picture of themselves after uploading their driver’s license for validation.2

For this thesis, the SCface database (Grgic et al., 2011) designed mostly for identification pur-
poses is used, which provides low-resolution images taken with state-of-the-art surveillance cam-
eras. The present work aims to set side-by-side the following two approaches: the direct compari-
son of a low-resolution image with a high-resolution frontal mugshot; and an indirect comparison
with the help of a reference database, also called a cohort. For this, the rank list method is applied
as explained by Schroff et al. (2011) and Müller et al. (2013). A rank list derived from an image’s
signature is compared to other rank lists. Furthermore, another approach is deduced, which also
uses the cohort however does not convert the signatures into rank lists but standardizes them
before comparison.

Chapter 2 provides an extensive literature overview on the history of face recognition, its com-
posing stages, deep learning, as well as on the rank list approach, including various comparison
methods. Chapter 3 details the background relevant for this thesis and consists of the SCface
database, the network model for feature extraction, and the software used for computational sup-
port. This is followed by a description of the approach in chapter 4 and the different methods
used for achieving the results in chapter 5. Finally, the results are discussed in chapter 6, and
the paper is concluded in chapter 7. All implementation details, as well as additional results and
plots, are recorded in the appendix A.

1https://www.face-rec.org/databases/, retrieved July 14, 2022.
2https://help.uber.com/driving-and-delivering/article/identity-verification-checks?

nodeId=75fb55dc-da08-41bb-b1cb-3229f2839956, retrieved July 14, 2022.

https://www.face-rec.org/databases/
https://help.uber.com/driving-and-delivering/article/identity-verification-checks?nodeId=75fb55dc-da08-41bb-b1cb-3229f2839956
https://help.uber.com/driving-and-delivering/article/identity-verification-checks?nodeId=75fb55dc-da08-41bb-b1cb-3229f2839956


Chapter 2

Related Work

This chapter highlights previous work on face recognition and deep learning. The origins and de-
velopment period of face recognition and the common recognition stages necessary for matching
identities are mentioned. The idea of comparing images with the help of rank lists, which are gen-
erated using a reference database, is described. This method is mainly based on previous research
by Müller (2010), Schroff et al. (2011) and Müller et al. (2013) which is summarized additionally.

2.1 An Overview of Face Recognition
The origins of automated face recognition date back to the 1960s, when the pioneers Woody Bled-
soe, Helen Chan Wolf, and Charles Bisson first worked on using a computer to recognize human
faces. The problem was to find a record in a large dataset of images that best matched a given
photograph. Due to the investor’s constraints on publicity, little work was published (Shaha et al.,
2008). Still, Bledsoe et al. proved that facial recognition could pose a viable biometric. By manu-
ally marking facial landmarks (e.g., eyes and mouth), they would calculate the distances between
the features, which were then compared between images to find a matching identity (de Leeuw
and Bergstra, 2007). However, the development stage of facial recognition for businesses did not
start until the late 1980s, when the discovery of a system today known as Eigenfaces was made,
enabling the formation of a set of basic features from facial images automatically (Sirovich and
Kirby, 1987).

In 2007, O’Toole et al. (2007) showed that in controlled environments, automatic face recogni-
tion systems could outperform human abilities and correctly match more identities. Researchers
then moved on to uncontrolled environments, where many factors strongly influence face recogni-
tion algorithms. The most well-known are facial pose, illumination, camera type, distance to the
camera, position within the camera view, accessories (e.g., hats or scarfs), facial expression, and
aging (Müller et al., 2013).

Ever since many face recognition algorithms have been published and matured into a stage
where they are used in various daily activities (e.g., unlocking devices and identification at border
control). However, most published works were built upon image databases not available to the
public; hence only report results for which it is unclear which parts of the databases are used
(Günther et al., 2017). In addition, the complexity of research challenges and the lack of software
including all requirements lead to many non-reproducible papers. To counteract this problem,
researchers try to avoid using proprietary resources and work on solutions to ease and motivate
the use of open-source software and data (Günther et al., 2012b; Anjos et al., 2012; Günther et al.,
2017). Günther et al. (2016), for instance, published their study (which they further extended
in 2017) solely based on such open-source material. By using resources available to the public,
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the experiments are reproducible, and performance comparisons between various algorithms are
verifiable.

Today, the field of face recognition is dominated by deep learning. Artificial neural networks
(i.e., a network of artificial neurons constituting a human brain) are trained with various databases
and achieve accurate results, revolutionizing the traditional approach (Wang and Deng, 2021).

2.2 Recognition Stages
Günther et al. (2016, 2017) describe the stages into which the face recognition task can be di-
vided. Traditional preprocessing steps include algorithms for applying a photometric enhance-
ment which reduces the effects of illumination conditions. However, thanks to deep learning,
preprocessing is a lot simpler. An overview of the complete face recognition pipeline, which is
applied nowadays, is given in figure 2.1.

(a) Preprocessing and feature extraction steps for
every image of the database.

(b) Scores calculation between probe and gallery
samples for identification.

Figure 2.1: RECOGNITION STAGES. This figure including subfigures (a) and (b) shows the order of
execution when running the face recognition task.

2.2.1 Preprocessing
Traditional algorithms for preprocessing include Histogram Equalization (HE)
(Ramírez-Gutiérrez et al., 2010), Self Quotient (SQ) (Wang et al., 2004), Tan & Trigg’s (T&T) (Tan
and Triggs, 2010), and Local Binary Patterns (LBP) (Heusch et al., 2006), as mentioned by Gün-
ther et al. (2017). These, however, are not necessary when using artificial neural networks. After
detecting the face, all images are aligned using affine transformations. Each pixel in the original
image is transformed, which results in a new image that is geometrically normalized and already
cut to a defined resolution. The preprocessed image is then simply fed to a trained neural network
for extracting facial features (Guo and Zhang, 2019).

2.2.2 Face Recognition
Once the facial features are extracted from all the images in the database, gallery templates are
enrolled for features that refer to the same subject. These templates are then used in the actual face
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recognition step. The features of one probe image are compared to the templates of each gallery
subject to compute a similarity score. This step is the most important for this thesis as different
methods for calculating these scores will be discussed. Günther et al. (2017) mention various
traditional algorithms, listed below, in charge of this step before the usage of neural networks.
Depending on the algorithm, the type of features may differ.

• Linear Discrimination Analysis (LDA): features are projected into a subspace, where they
are compared by a distance measure to maximize class separability (Zhao et al., 1998).

• LDA-Infrared (LDA-IR): additionally to LDA, two color layers of the image provide more
information (Lui et al., 2012).

• Principal Component Analysis (PCA): the projection is the same as the one for LDA. How-
ever, PCA finds the directions of maximal variance (Turk and Pentland, 1991).

• Local Region PCA (LRPCA): this algorithm computes PCAs for several local regions (e.g.,
eyes, nose, mouth) (Phillips et al., 2011).

• Local Gabor Binary Pattern Histogram Sequence (LGBPHS): this algorithm uses the LBP
preprocessing algorithm. LBP codes are combined into several histograms used for com-
parison (Zhang et al., 2005).

• Gabor Grid Graphs: so-called Gabor jets described as local texture features are extracted
and used to find the similarity between images (Günther et al., 2012a).

• Inter-Session Variability (ISV): with the help of Gaussian mixture models, images can be
compared and evaluated for similarity (Wallace et al., 2011).

2.2.3 Evaluation: Identification & Verification
Finally, after computing all similarity scores, the final performance measure is computed. Iden-
tification Performance (IP) is reported as a Recognition Rate (RR). The RR is the total number of
correctly identified probe images (i.e., genuines) denoted as gen divided by the total number of
all probe images Np and therefore shows the percentage of success:

RR =
gen

Np
(2.1)

Verification Performance (VP) can be reported in several ways. Commonly used are the False
Match Rate (FMR) and the False Non-Match Rate (FNMR), similar to False Acceptance Rate
(FAR)/False Positive Rate (FPR) and False Rejection Rate (FRR)/False Negative Rate (FNR), re-
spectively. Both FMR and FNMR are calculated using a threshold θ. FMR checks the total num-
ber of falsely matched probe-gallery pairs (i.e., impostors) denoted as imp with a score above θ,
whereas FNMR checks the total number of genuines with a score below θ. Dividing by the total
number of impostors/genuines respectively will result in the final rate:

FMR(θ) =
imp > θ

imp
FNMR(θ) =

gen < θ

gen
(2.2)

The two rates are commonly plotted in two ways:

1. As a histogram of genuines, impostors, and an Equal Error Rate (EER). The EER indicates
at what threshold θ the FMR equals the FNMR.

2. Using the Receiver Operating Characteristics (ROC) which plots the True Match Rate (TMR)
calculated by 1−FNMR over the FMR.

Figure 2.2 shows an example of each evaluation metric.
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Figure 2.2: VERIFICATION PERFORMANCE. This figure including subfigures (a) and (b) shows an exam-
ple of each evaluation metric for VP.

2.3 Deep Learning
Deep learning has become very popular in face recognition in recent years. The main difference
when using deep learning is how facial features are extracted from images. As mentioned, tra-
ditionally, algorithms such as HE or LBP would work with hand-labeled annotations of facial
landmarks (i.e., eyes and mouth) to successfully extract the features. Depending on the feature
extraction, various algorithms such as PCA or LGBPHS would then be used to compare those
features. However, when applying deep learning methods, the preprocessed images are fed to a
neural network. It takes the values of each pixel of the images and outputs a vector representing
the subject’s identity (i.e., the subject’s features). Features are then compared with the help of
distance computations such as the cosine distance (2.4) (Wartmann, 2021).

But what exactly is a neural network? Guresen and Kayakutlu (2011) describe an artificial
neural network as a mathematical model inspired by the structure of the human brain. Namely,
neurons that are connected through weighted links and process information to overcome complex
computational tasks. Activation functions determine when neurons are meant to fire and when
not (Guo and Zhang, 2019). Commonly, networks consist of an input, a hidden data processing,
and an output layer. However, they are not restricted to a single data processing layer. Several
hidden layers which take the output of the previous one as new input can be connected. These
networks are then called deep neural networks (Wang and Deng, 2021). The network most widely
used for face recognition tasks is the so-called Convolutional Neural Network (CNN) (Yi et al.,
2014). CNNs are made up of three hidden layers: convolutional layers, which take the input
and extract essential features; fully-connected layers, which support linking together neurons &
layers; and pooling layers used for down-sampling (Guo and Zhang, 2019).

In addition to its architecture, networks require training data. The more training data is avail-
able, the more accurate the network becomes, similar to how humans automatically train their
visual system when being confronted with many faces. Parkhi et al. (2019) propose a procedure
to create a reasonably large face dataset. First, a list of names of candidate identities is required
to obtain faces. By focusing on celebrities and public figures, a large number of distinct images is
guaranteed. Next, each name is queried in online search engines (e.g., Google) to obtain enough
pictures. Third, erroneous faces are filtered from the images by using the top 50 images of one
subject as positive and the top 50 of all the other subjects as negative training samples. Finally,
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before further purifying the data using human annotations, duplicate images and near duplicates
from the same subject are removed. Using this method, a dataset with roughly 950’000 good
images can be generated (Parkhi et al., 2019).

Next to a network’s architecture and training data, the usage of loss functions is essential for
accurate results. Loss functions serve the purpose of maximizing intra-class similarity and inter-
class variance. Intra-class similarity describes how close a subject’s features are to one another,
whereas inter-class variance describes the difference between the features of two subjects. There-
fore, the values in one feature vector are ideally close together while being very different from
those of another (Schmidli, 2021).

Creating different neural networks takes various architectures, loss functions, and training
data. Naturally, the more accurate a network has to be, the more complex and extensive it be-
comes. AlexNet, published in 2012, was the first network to achieve state-of-the-art results and
marks the breakthrough of deep learning (Krizhevsky et al., 2012). Since then, many new archi-
tectures and loss functions to create networks with improved performance have been published.
Widely used loss functions include softmax loss (Cao et al., 2018), triplet loss (Schroff et al., 2015),
and center loss (Wen et al., 2016) which are all Euclidean-based (i.e., they separate features using
the Euclidean distance). Recent trends show the introduction of cosine-margin-based functions,
which try to separate features using the larger cosine distance instead. This should further maxi-
mize face class separability. Well-known functions include large-margin loss (or L-Softmax) (Liu
et al., 2016), SphereFace (Liu et al., 2017), CosFace (Wang et al., 2018), and ArcFace (Deng et al.,
2019). For the thesis at hand, solely ArcFace is of importance and mentioned in section 3.2.

2.4 Rank Lists
Commonly when performing the face recognition task, the probe images are each compared to
every gallery image directly. There are many methods to determine similarity; this thesis focuses
on the cosine similarity measure to compute the scores for direct comparison. It takes two one-
dimensional vectors u and v (i.e., the extracted features of one probe and one gallery image),
where higher values stand for higher similarity. The cosine distance dcos(u, v) can be derived
from the similarity as follows:

Scos(u, v) =
u · v

∥u∥∥v∥
(2.3)

dcos(u, v) = 1− Scos(u, v) (2.4)

However, while yielding good results in most cases, a direct comparison of probe and gallery
images is not always the best approach. As mentioned in section 2.1, performance is influenced
by many factors in uncontrolled environments.

2.4.1 Idea
Before the usage of networks, Schroff et al. (2011) found that when comparing images of subjects
with different poses and expressions, better results can be reached by using so-called doppel-
gänger lists (i.e., rank lists). These lists are generated with the help of a reference database (also
known as a cohort), by first creating a signature for each image which is then converted into
ranks. Based on the following two ideas, rather than comparing the features directly, the similar-
ity of those rank lists can be computed to find the best match.

1. People who are similar in one situation (e.g., with their head turned to the side) will also be
similar in another (e.g., with their head turned to the front).
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Figure 2.3: RECOGNITION ACROSS EXPRESSION. This figure taken from Schroff et al. (2011) illustrates
the impact of facial expressions before the introduction of deep learning. Comparing person A in the top
and person B in the bottom row for the two situations ϕ1 and ϕ2 results in a higher similarity for expressions
alike rather than for the same person.

2. People can be described in relation to other people (e.g., a person A looks similar to a person
B but not to a person C)

The cohort for this method consists of images with subjects different from the ones used in probe
and gallery images. Schroff et al. (2011) explain that when using distance measures like described
in formula (2.3), the cohort subject with the smallest distance to the probe/gallery subject will
become a look-alike (i.e., a doppelgänger). All the images in the cohort can be sorted following
this procedure, resulting in a doppelgänger list.

Schroff et al. (2011) show that this method works especially well for subjects with different
poses and expressions because the subjects considered the most similar from the cohort are likely
to have similar poses and expressions. Therefore, one could say that the comparison considers
more information and can achieve better results than when comparing only features directly with
each other. This is further shown in figure 2.3.

To visualize the process of the rank list method, figure 2.4 shows the separate steps to calculate
similarity scores between probe and gallery images. The first step is to compute Scos(u, v) for the
features of all the probe and gallery images separately, each with those of the cohort images which
show the same variation. Therefore, after this step, every probe and gallery image is assigned
a one-dimensional vector filled with similarity scores (i.e., its signature) each referring to one
subject in the cohort. Next, these vectors are converted into rank lists. This is done by giving the
first rank 0 to the highest entry (i.e., the most similar cohort image), the next rank 1 to the next
highest, and so on. The last step is to compute the final similarity scores between rank lists (i.e.,
all lists of the probe images, each with the ones of the gallery images). Figure 2.5 visualizes how
the cohort is applied.

Today, neural networks have progressed so far, that differences in poses as well as occlusions
(i.e., scarfs and sunglasses) practically do not impact the results anymore (de Freitas Pereira et al.,
2022). Especially the network model ArcFace-100 shows solid performance. However, since a lot
of the state-of-the-art networks still show inaccurate results when using low-resolution images,
the rank list method is important for this thesis.
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Figure 2.4: RANK LIST STAGES. This figure shows the order of execution when running the rank list
method according to Schroff et al. (2011) extending figure 2.1.

Figure 2.5: SIGNATURE GENERATION. This figure taken from Müller et al. (2013) shows how the cohort
is used to generate an image’s signature, which is then converted to a rank list.
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2.4.2 Comparison Methods
Müller 2010

The first usage of rank lists is described by Müller et al. (2007) and Müller (2010). Müller (2010)
introduces the following terminology: let G stand for all gallery, P for all probe, and C for all
cohort images, where N denotes the number of subjects in the cohort. For the first step as de-
scribed above, each probe p (i.e., its features) and each gallery image g separately is assigned a list
of similarity scores. The scores are computed by referring to each cohort image c with the same
variation (e.g., taken at equal distance) using formula (2.3):

∀m ∈ {1, . . . , N} : Scos(p, cm) and ∀m ∈ {1, . . . , N} : Scos(g, cm) (2.5)

The resulting lists are converted into rank lists π for probe and γ for gallery images. For com-
paring rank lists, Müller (2010) describes three criteria necessary for efficiently computing the
similarity:

1. Identical rank lists must result in the highest similarity (i.e., the output of S ∈ [0, 1] with
S = 1 indicating maximal similarity).

2. The more equal indices result in the same rank, the higher the similarity should be.

3. Lower ranks (i.e., showing high similarity) should be weighted more than higher ranks.

Müller (2010) proposes the following function, which fulfills all criteria and computes the simi-
larity between two rank lists, where F denotes a normalization factor:

S2010mueller(π, γ) =
1

F
·
N−1∑
m=0

1√
π(m) + γ(m) + 1

F =

N−1∑
i=0

1√
2i+ 1

(2.6)

The similarity scores are then further used to evaluate IP and VP.

Schroff

Schroff et al. (2011) found that the similarity value drops significantly at some point and that the
differences become small after this point. Therefore, instead of applying weights according to the
rank, they include a factor k. Only ranks up to this factor are considered, where similarities are
most significant. They introduce the following similarity function. Note that the factor k is not
increased by one as in the original function since the lowest rank in the lists π and γ is zero.

Sschroff (π, γ) =

N−1∑
m=0

[
k − π(m)

]
+
·
[
k − γ(m)

]
+

[x]+ =

{
x if x > 0,

0 otherwise

(2.7)

Note that due to [x]+, the results using values where k > N are equal to the those achieved with
k = N . Similarly, when using values where k < 0 the performance remains equal to that achieved
with k = 0.
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Müller 2013

Two years later Müller et al. (2013) published their article including a new similarity function,
which again fulfills all mentioned criteria and improves S2010mueller (2.6):

S2013mueller(π, γ) =
1

F
·
N−1∑
m=0

λπ(m)+γ(m)

F =

N−1∑
i=0

λ2i

(2.8)

Instead of the decaying function f1(x) used for S2010mueller (2.6), f2(x) is used noted below. It
guarantees a faster decay and therefore yields better results. Additionally, it “[...] allows for a
natural interpretation and implementation as a neural network”(Müller et al., 2013).

f1(x) =
1√
x+ 1

, f2(x) = λx with λ ∈ [0.9, 1) (2.9)

Wartmann

When working on frontal-to-profile face recognition with rank lists, Wartmann (2021) however,
found that weighing low ranks more than high ranks does not necessarily result in the best scores.
Instead, Wartmann weighted low ranks as well as high ranks more than ranks in between achiev-
ing better results, and redefined the criteria a similarity function should fulfill as follows:

1. Rank differences of low as well as high ranks should be weighted more.

2. The more minor absolute differences between ranks are, the more similar the respective
rank lists should be.

3. High absolute differences should have the opposite effect (i.e., the rank lists should be dif-
ferent).

In regard to these criteria Wartmann (2021) defined a new parametric similarity function, where
the parameters α, β ≥ 1:

Swartmann(π, γ) = −
N−1∑
m=0

fα
(
π(m), γ(m)

)
· fβ
(
π(m), γ(m)

)

fα(x, y) =

(
|x− y|
N

)α

fβ(x, y) =

(∣∣∣∣2xN − 1

∣∣∣∣β +

∣∣∣∣2yN − 1

∣∣∣∣β
)

(2.10)

Here, fβ is used for weighting high and low ranks more heavily than intermediate ones (criterion
1). β regulates how extreme (i.e., how high or how low) the rank must be for being weighted
more heavily; thus, large β values result in a smaller range of heavily weighted ranks. fα can be
understood as weighting function for fβ with values between 0 and 1. Additionally, the expo-
nent α guarantees the increased weighting of large differences between ranks compared to small
differences (criteria 2 & 3). Note that the sum is negated such that higher scores stand for higher
similarity.
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Correlation Functions

Even though rank lists were first used and compared by Müller et al. (2007) and Müller (2010),
the mentioned statistical methods are not the first for comparing permutations. Traditional cor-
relation functions can also be applied to rank lists, such as the Spearman correlation (Spearman,
1987):

Sspearman(π, γ) = 1−

(
6

N(N2 − 1)
·
N−1∑
m=0

∣∣π(m)− γ(m)
∣∣2) (2.11)

The function counts the differences in the positions of the same ranks. In fact, it is very sim-
ilar to Sschroff (2.7), which sums the products of both ranks. When expanding the binomial
of Sspearman (2.11), it becomes clear that both functions behave similarly, as the first part of
Sspearman (2.11) can be seen as a normalization factor. Even more so, when k = N is chosen;
then the two functions become monotonous.

Another correlation is described by Kendall’s tau (Kendall, 1938), for which a weighted ver-
sion was later implemented (Vigna, 2015).

Skendall(π, γ) =
2

N(N − 1)
·
N−1∑
m1=1

m1−1∑
m2=0

sgn
(
π(m1)− π(m2)

)
· sgn

(
γ(m1)− γ(m2)

)

sgn =


−1 if x < 0,

0 if x = 0,

1 if x > 0

(2.12)

Kendall’s tau counts how many pairs of ranks switched direction between the lists. The weighted
version of Kendall’s tau adds weights according to the rank using the following function f3(x).
Adding weights guarantees the third criterion by Müller (2010).

f3(x) =
1

x+ 1
(2.13)

Therefore, the correlation function is defined identical to Skendall (2.12) with the difference that
each rank is weighted first:

Sw.kendall(π, γ) =
2

N(N − 1)
·
N−1∑
m1=1

m1−1∑
m2=0

sgn
(
f3
(
π(m1)

)
− f3

(
π(m2)

))
· sgn

(
f3
(
γ(m1)

)
− f3

(
γ(m2)

))
(2.14)



Chapter 3

Background

This chapter describes the setup and software used for running the experiments: the SCface
database, which provides images taken in different situations and defined protocols; the library
InsightFace, which enables feature extraction; the open-source software Bob used for pipeline
setup and evaluation; and the open-source software SciPy which provides correlation functions
and distance measures.

3.1 SCface Database
There are many different face databases available today. On their website, Grgic and Delac1 list
a total of 101 databases often used by researchers. Many, however, include images taken in a
controlled environment and are of high resolution. Pictures are taken not using commercially
available surveillance equipment and usually using the same camera for all of them. Grgic et al.
(2011) claim that the images “[...] lack the real-world settings part.” and are therefore far from
real-world conditions (i.e., an uncontrolled environment). This leads to the issue that there are few
studies “[...] on face recognition in such naturalistic conditions, resulting in very high recognition
rates suggesting that face recognition is almost a solved problem.” (Grgic et al., 2011).

The SCface database should fill the gap as it mimics an uncontrolled environment. It con-
sists of 4’160 images from 130 subjects taken in uncontrolled lighting with five different surveil-
lance video cameras. Additionally, a high-resolution facial mug shot for each subject is included
(cropped to 1’600 × 1’200 pixels with a face height of roughly 320 pixels). Each subject is recorded
at three different distances resulting in various quality and resolution. Protocols indicate which
images of the gallery and the probe are compared (i.e., images of a particular variation such as the
distance). Since the gallery of the SCface database only consists of the mugshots, the images from
it are the same for each protocol. However, the protocols help filter the probe images according
to their distance:

• Distance 1 [protocol far]:
images taken with a distance of 4.2 meters cropped to 100 × 75 pixels, where the face only
has about 20 pixels of height (de Freitas Pereira et al., 2022).

• Distance 2 [protocol medium]:
images taken with a distance of 2.6 meters cropped to 144 × 108 pixels, with a face height of
roughly 30 pixels.

1https://www.face-rec.org/databases/, retrieved July 14, 2022.

https://www.face-rec.org/databases/
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• Distance 3 [protocol close]:
images taken with a distance of 1.0 meter cropped to 224 × 168 pixels, where the height of
the face amounts to approximately 45 pixels.

Since the cameras are placed slightly above the subject’s head (i.e., installed at the height of 2.25
meters), the pose is typical for a commercial surveillance system. The database also includes
infrared photos and pictures with different poses per subject (from −90 to +90 degrees); however,
these are not considered in this thesis and, therefore, not significant. Figure 3.1 shows the images
of one subject from the database relevant to this thesis.
Subjects include 114 males and 16 females, all Caucasian, most of them between the ages of 21
and 23 (see figure 3.2). Textual files contain information such as whether the subject has a beard,
a mustache, or is wearing glasses (Grgic et al., 2011).

The SCface database is of interest for this thesis because it provides low-resolution surveillance
footage necessary to compare methods that might yield more accurate results than many state-of-
the-art face recognition algorithms.

3.2 Face Analysis Library InsightFace
As mentioned in section 2.3, using artificial neural networks is the method of choice for face recog-
nition. CNNs are trained on various databases to successfully and accurately map the face images
into features. Teaching the CNN determines its performance and is therefore very important. As
mentioned earlier, one of the main challenges is “[...] the design of appropriate loss functions
that enhance discriminative power” (Deng et al., 2019). Deng et al. (2019) introduce an additive
angular margin loss called ArcFace, which:

• optimizes the distance margin, which guarantees small intra-class and large inter-class dis-
tances,

• consistently outperforms the state-of-the-art,

• is easy to implement, as it does not have to be combined with other loss functions to show
stable performance

• and runs efficiently with negligible computational overhead; therefore is applicable with a
large number of identities.

For the experiments, a model which has been trained on the face analysis library InsightFace
is used. The library includes, next to other state-of-the-art algorithms of face recognition, face
detection, and face alignment, several models of the ArcFace recognition approach. As it proves
such outstanding performance (de Freitas Pereira et al., 2022), the model ArcFace-InsightFace-
IResNet100 trained on the MS1MV2 dataset2 is applied for feature extraction.

3.3 Software Bob
Section 2.1 briefly mentions how the works of Günther et al. (2016) and Günther et al. (2017)
influence the reproducibility of experiments. Anjos et al. (2017) define four criteria a paper must
provide to be considered reproducible.

2https://github.com/deepinsight/insightface/tree/master/model_zoo, retrieved July 14, 2022.

https://github.com/deepinsight/insightface/tree/master/model_zoo
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(a) Mugshot (b) Surveillance Camera 1

(c) Surveillance Camera 2 (d) Surveillance Camera 3

(e) Surveillance Camera 4 (f) Surveillance Camera 5

Figure 3.1: SCFACE IMAGE SET. This figure taken from Grgic et al. (2011) including subfigures (a) -
(f) shows an image set of one subject from the database (only including the images of importance for this
thesis).
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Figure 3.2: SCFACE AGE DISTRIBUTION. This figure taken from Grgic et al. (2011) shows the age distri-
bution of the subjects recorded in the SCface database.

1. All experiments declared should be repeatable yielding the same results choosing the same
parameters.

2. The data and code used should be open-source, such that it can be shared and anybody can
re-run the experiments.

3. The infrastructure should be easy to understand and open for extension to enable imple-
mentation of new approaches.

4. The system should run reliably and prove stability.

The software Bob is an open-source, all-in-one, transparent signal processing and machine learn-
ing toolbox designed per these criteria (Anjos et al., 2012). It provides a researcher-friendly Python
environment reducing development time and guarantees efficient processing with its fast C++ im-
plementations. Several implementations for preprocessors, feature extractors, databases, recog-
nition algorithms, and evaluation metrics are available. For databases, Bob includes the available
evaluation protocols which ensure reproducibility. They define the images for training as well as
the ones for evaluating an algorithm. Furthermore, extensive documentation is offered3, also men-
tioning Bob’s extensibility allowing researchers to use it for their purposes. Finally, the software
runs on Linux and MacOS 64-bit operating systems and can be installed with conda or pip. The
support for Windows is still planned (Anjos et al., 2012).

Bob (v11.0.0) is used for the experiments declared in this thesis to easily set up a pipeline with
the ArcFace-InsightFace model mentioned above for feature extraction. Furthermore, it allows an
easy initialization of the described SCface database using a defined protocol and includes tools
to efficiently load extracted features using the HDF5 library 4. In addition, the software offers
evaluation metrics helpful for plotting, which allows easy comparison between experiments (e.g.,
the plots visible in figure 2.2). So, after running the experiments, the recorded evaluation files are
handed to Bob to evaluate VP.

3https://www.idiap.ch/software/bob/, retrieved July 14, 2022.
4https://www.hdfgroup.org/solutions/hdf5/, retrieved July 14, 2022.

https://www.idiap.ch/software/bob/
https://www.hdfgroup.org/solutions/hdf5/
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3.4 Software SciPy
The thesis at hand, aims to efficiently compare the performance of different similarity functions.
There are numerous functions to calculate correlations or distances between lists. Rather than
implementing well-known functions from scratch, software providing them is used. SciPy is the
perfect candidate for this task for the following reasons:

• SciPy’s functionalities are publicly available since the software is open-source.

• It is researcher-friendly and fits the software Bob as it also provides a Python environment.

• NumPy, a Python library supporting rapid vector computations and used for working with
extracted features, is extended by SciPy.

• The software connects fast C++ implementations with Python’s flexibility, similar to Bob.

• There is a well-maintained and extensive online documentation to help with its functional-
ities.5

The functions important for this thesis are found in the packages scipy.stats and scipy.
spatial.distance. They are listed below, together with their notation used for reference.

1. Correlation functions from scipy.stats

• The Spearman correlation: Sspearman (2.11)
• Kendall’s tau: Skendall (2.12)
• The weighted version of Kendall’s tau: Sw.kendall (2.14)

2. Distance computations from scipy.spatial.distance, where u and v are one-dimen-
sional vectors of size N and i ∈ {1, 2, . . . , N}. Note that the distance measures are negated
such that higher scores stand for higher similarity.

• The cosine similarity:

Scos(u, v) as defined in formula 2.3

• The Bray-Curtis similarity:

Sbraycurtis(u, v) = −
∑

|ui − vi|∑
|ui + vi|

(3.1)

• The Canberra similarity:

Scanberra(u, v) = −
∑ |ui − vi|

|ui|+ |vi|
(3.2)

• The City Block (Manhattan) similarity:

Scityblock(u, v) = −
∑

|ui − vi| (3.3)

• The squared Euclidean similarity:

Ssq.euclidean(u, v) = −∥u− v∥22 (3.4)
5https://docs.scipy.org/doc/scipy/reference/index.html, retrieved July 14, 2022.

https://docs.scipy.org/doc/scipy/reference/index.html
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• The Minkowski similarity, where p defines the order of the norm:

Sminkowski(u, v) = −∥u− v∥p =
(∑

|ui − vi|p
) 1

p

(3.5)

Note that the squared Euclidean similarity Ssq.euclidean (3.4) is monotonous to the Euclidean sim-
ilarity. However, only the first is considered since the latter computes the square root; therefore,
it is slower in execution.

The similarity function Sminkowski (3.5) includes the parameter p, which defines the norm
of a vector, and is therefore known as the p-norm. p = 1 results in the Manhattan norm and
equals the City Block distance part of formula (3.3). Similarly, p = 2 results in the Euclidean
norm and therefore equals the Euclidean distance. As p approaches ∞ the p-norm approaches the
maximum norm (3.6). Note that the maximum norm equals the Chebyshev distance. This effect
can be further observed in figure 3.3. The most interesting values are given for 0 < p ≤ 3, as the
variance is highest.

∥u∥∞ = max
(
|u1|, . . . , |uN |

)
(3.6)

Figure 3.3: UNIT CIRCLES. This figure taken from Mohamad Mezher et al. (2019) illustrates unit circles
(xp + yp) = 1 for various p-values. Unit circles consist of all points, one unit from the circle’s center. The
figure shows that for instance, the unit circle for p = 1 results in a tilted square, which is the unit circle of the
Manhattan norm, and for p = 2 it resembles a perfect circle, which is the unit circle of the Euclidean norm.
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Approach

This chapter provides an overview of the various methods used for the experiments. First, the
term baseline is introduced. The first method describes rank list generation to evaluate perfor-
mance, which is opposed to the direct comparison method. A second method is represented by
computing the standard score of the lists lp and lg . The implementation details of each section are
listed in the appendix A.1.

4.1 Baseline
The baseline describes the direct comparison method on the SCface database. Each probe sample
is compared to all gallery samples using the similarity function Scos(u, v) (2.3), where u is defined
as the probe’s features and v as those of the respective gallery sample. For VP, the resulting
scores are evaluated by Bob. The maximum of all scores reveals the gallery image, which is the
most similar to the probe image. For IP, their subject IDs are compared to check whether the
match is genuine.

4.2 Rank List Method
The baseline compares a low-resolution probe image with a high-resolution gallery image directly.
However, as mentioned by Schmidli (2021), many state-of-the-art face recognition algorithms fail
this task leaving room for improvement. In light of the cited publications in section 2.4 resulting
in more accurate scores, the idea of rank lists is applied as a method in this thesis. The goal is to
evaluate whether this method can achieve better low-resolution face recognition the same way it
did for the recognition task with different poses.

For the generation of rank lists, a cohort is necessary, which for the SCface database consists
of both high and low-resolution images covering all protocols. Therefore, the cohort is split into
samples serving as a reference database for all probe samples and such serving as a reference
database for all gallery samples, denoted as probe cohort and gallery cohort, respectively. Since
the protocols defined by the database indicate which samples should be compared for a given
distance, as mentioned in section 3.1, the probe cohort is filtered using the specified protocol
to include only the samples relevant for the current recognition task. The database consists of
multiple images per subject (i.e., five different cameras are used). Computing the average of all
the subject’s features yields the best results (de Freitas Pereira et al., 2022). With this method, only
one sample per subject in the cohort serves as a reference, which is an advantage when generating
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Figure 4.1: RANK LIST STAGES FOR SCFACE. This figure shows the order of execution when running
the rank list method on the SCface database extending figures 2.1 and 2.4.

rank lists for the probe and gallery samples. Consequently, the resulting rank lists are of equal
length, guaranteeing a successful comparison.

Cosine distances are computed between each probe sample and the probe cohort using the
distance measure dcos(u, v) as defined in formula (2.4), where u is defined as the probe’s features
and v as those of the respective cohort sample. This is done after preparing the cohort but before
applying the comparison methods and is repeated for each gallery sample and the gallery cohort.
Once all distances are calculated, they are saved in a list, which is then turned into the sample’s
rank list. Rank 0 then indicates the smallest distance (which stands for the highest similarity),
rank 1 the second smallest, and so on. Figure 4.1 shows how the process stated in figure 2.4
changes when applied to the SCface database.

Finally, the different comparison methods can be applied, which use the generated rank lists
when comparing each probe sample with all gallery samples to compute the similarity scores.

4.3 Standardization Method
The rank list method is useful because the resulting cosine distances significantly differ between
the probe and the gallery samples due to the resolution of the images. The similarity between
the probe samples and probe cohort is affected more since the images have a low resolution.
Therefore, the cosine distances computed between the gallery samples and gallery cohort (which
is of high resolution) are more accurate. This issue prohibits an efficient usage of distance com-
putations between the calculated lists of cosine distances lp for probe and lg for gallery samples.
However, what if this difference in distribution can somehow be neutralized? Then distance com-
putations applied directly on lp and lg yield accurate results.

Furthermore, there is no need for rank lists, which might pose an advantage. When generating
rank lists, the distribution of the entries is neglected, as the values are assigned an integer rank.
Distance computations, on the other hand, consider the gaps between the entries and, therefore,
include this distribution. So in summary, the cohort is used, however, without rank lists. To
adjust the mentioned difference in distribution between the cosine distances, the lists lp and lg are
standardized (i.e., the corresponding mean µ is subtracted from each list, and the result is divided
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by the list’s standard deviation σ) as follows, where x stands for lp and y for lg .

xz =
x− µx

σx
yz =

y − µy

σy
(4.1)

For comparison, only the dividend is applied to lp and lg to find out whether dividing by the
standard deviation affects the distance computations.

xd = x− µx yd = y − µy (4.2)

Note that when lp and lg are standardized (4.1), the functions Scos (2.3) and Ssq.euclidean (3.4) be-
come monotonous yielding the same performance results.





Chapter 5

Results

This chapter provides the results of all experiments performed using the rank list and the stan-
dardization method on the SCface database. Their performance is compared to that of the baseline
using tables for RRs and graphs for the ROC curves. Curves that stick to the upper-left corner
stand for accurate performance, (Metz, 1978) and vice versa; the more the curves flatten and move
to the lower right, the less precise the corresponding method is. In addition, the CPU runtime is
recorded to also compare execution performance.

5.1 Baseline
As mentioned in section 4.1, the baseline describes the direct comparison of probe and gallery
images, and its performance serves as an essential reference. As the baseline does not use the
cohort, the cohort size does not impact the results. The RR for each protocol and the runtime
(measured as mentioned in section A.1.7) is recorded in table 5.1. The ROC curves in figure 5.1
show the baseline’s VP. The results show that performance decreases the further away the subjects
are recorded. This observation is equally visible for all comparison methods.

RR (%) average runtime (ms)close medium far

100.00 98.18 74.09 382.3718

Table 5.1: BASELINE IP. This table includes the RRs for each protocol given in percentages as well as the
average runtime in milliseconds.

5.2 Rank List Method
The rank list method described in section 4.2 uses the cohort. Therefore the results of the small
cohort (i.e., consisting of 43 samples) are separated from those of the large cohort (i.e., 86 samples)
and presented in the corresponding sections 5.2.2 and 5.2.3. The average time for preprocessing
(i.e., generate rank lists) for the small cohort is pts = 503.0539 milliseconds and ptl = 938.4035
milliseconds for the large cohort.
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Figure 5.1: BASELINE VP. This figure shows VP of the baseline for every protocol.

The similarity functions Sschroff (2.7), S2013mueller (2.8) and Swartmann (2.10) all include param-
eters, which when changed yield different results. Therefore, the following section provides an
overview of the best parameters applied for all consecutive experiments.

5.2.1 Schroff’s, Müller’s & Wartmann’s Parameters
Since the focus is to highlight how different parameters influence the methods’ performance, the
runtime is not measured for the results presented. Due to the same reasons, only the version
using the small cohort is shown. The results for the larger cohort are listed in the appendix A.2.1.

Schroff

The similarity function presented in Schroff et al. (2011) includes the parameter k, which defines
up to what point the ranks in the lists are considered (i.e., where similarities are most significant).
The small cohort includes 43 samples. Therefore, values k ∈ {10, 20, 30, 43} are presented to show
a gradual increase. Table 5.2 summarizes IP. Figure 5.2 shows VP.

The results indicate that (1) a small k is best only for protocol far of the small cohort when
referring to IP, and (2) otherwise, a large k generates the best IP and VP.

parameter RR (%)
close medium far

k = 10 44.55 27.73 16.36
k = 20 70.00 35.91 16.36
k = 30 76.36 46.82 13.18
k = 43 83.64 50.45 12.73

Table 5.2: SCHROFF IP SMALL COHORT. This table shows the RRs for each defined k as well as for each
protocol given in percentages. The best values for each protocol are marked in bold.
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Figure 5.2: SCHROFF VP SMALL COHORT. This figure including subfigures (a) and (c) shows VP of the
similarity function Sschroff (2.7) for each protocol using a different parameter k on the small cohort.

Müller 2013

For their similarity function, Müller et al. (2013) make use of a decaying function which includes
the parameter λ ∈ [0.9, 1). The values λ ∈ {0.90, 0.95, 0.99} are presented in table 5.3 and figure 5.3
to show a gradual increase.

From the results, it becomes clear that (1) a small λ is best only for protocol far of the small
cohort when referring to IP, and (2) otherwise, a large λ generates the best IP and VP.

parameter RR (%)
close medium far

λ = 0.90 70.00 38.64 17.73
λ = 0.95 76.36 43.64 15.91
λ = 0.99 81.82 50.00 14.09

Table 5.3: MÜLLER 2013 IP SMALL COHORT. This table shows the RRs for each defined λ as well as for
each protocol given in percentages. The best values for each protocol are marked in bold.

Wartmann

Wartmann (2021) mentions the values best for the parameters α and β, namely α = 1.5 and β = 5.
Applying the similarity function to the low-resolution images of the SCface database, figure 5.4
shows how IP decreases or stagnates for higher values. Table 5.4 lists the most interesting α-β-
pairs, and figure 5.5 summarizes VP. Since the parameters are powers of differences in ranks,
values slightly larger than one are expected to perform best. The results indicate that

1. α-β-values roughly between one and three result in the most accurate performance,

2. IP is mostly best when both parameters are increased independently;

3. increasing only β has the smallest impact on IP;

4. the parameters overall have very little influence for protocol far concerning VP.
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Figure 5.3: MÜLLER 2013 VP SMALL COHORT. This figure including subfigures (a) - (c) shows VP of
the similarity function S2013mueller (2.8) for each protocol using a different parameter λ on the small cohort.

parameter RR (%)
close medium far

α = 1.3, β = 1.0 86.36 49.55 15.45
α = 1.4, β = 1.0 85.91 49.09 15.00
α = 1.5, β = 1.0 86.36 49.09 15.45
α = 1.6, β = 1.0 86.36 47.73 16.36
α = 1.7, β = 1.0 85.91 47.73 16.36
α = 1.8, β = 1.0 85.00 47.73 16.36
α = 1.9, β = 1.0 85.00 47.73 17.27
α = 2.0, β = 1.0 85.00 47.27 17.27
α = 2.1, β = 1.0 85.00 45.91 16.82
α = 2.2, β = 1.0 84.55 45.00 16.82
α = 2.3, β = 1.0 84.09 44.55 15.91

(a) increasing α

parameter RR (%)
close medium far

α = 1.0, β = 2.0 86.36 49.09 15.00
α = 1.0, β = 2.1 85.91 50.00 15.00
α = 1.0, β = 2.2 85.45 50.45 15.00
α = 1.0, β = 2.3 85.45 51.36 15.00
α = 1.0, β = 2.4 85.00 51.36 15.00
α = 1.0, β = 2.5 85.00 50.91 15.00
α = 1.0, β = 2.6 85.00 50.91 15.00
α = 1.0, β = 2.7 84.55 50.45 15.45
α = 1.0, β = 2.8 83.64 50.45 15.45
α = 1.0, β = 2.9 83.18 50.45 15.91
α = 1.0, β = 3.0 83.18 50.45 15.45

(b) increasing β

parameter RR (%)
close medium far

α = 1.1, β = 1.1 86.36 50.91 15.45
α = 1.2, β = 1.2 86.82 49.55 15.45
α = 1.3, β = 1.3 86.82 49.09 15.00
α = 1.4, β = 1.4 87.27 47.73 15.91
α = 1.5, β = 1.5 86.82 48.64 15.91
α = 1.6, β = 1.6 85.91 48.18 16.82
α = 1.7, β = 1.7 86.36 48.64 16.36
α = 1.8, β = 1.8 86.36 48.18 16.36
α = 1.9, β = 1.9 85.45 47.73 16.82
α = 2.0, β = 2.0 85.00 45.45 17.27
α = 2.1, β = 2.1 84.55 45.00 17.27

(c) increasing both

parameter RR (%)
close medium far

α = 1.25, β = 1.75 88.18 48.18 15.45
α = 1.25, β = 2.00 88.18 49.09 15.91
α = 1.25, β = 2.25 87.73 49.55 16.36
α = 1.25, β = 2.50 87.27 50.45 15.91
α = 1.50, β = 1.75 86.36 47.73 16.82
α = 1.50, β = 2.00 86.82 49.09 16.36
α = 1.50, β = 2.25 85.91 48.18 17.27
α = 1.75, β = 2.00 85.45 47.73 17.27
α = 1.75, β = 2.25 85.45 47.73 18.18
α = 1.75, β = 2.50 85.45 47.73 18.18
α = 1.75, β = 2.75 85.45 48.18 17.73

(d) various α-β-pairs

Table 5.4: WARTMANN IP SMALL COHORT. This table including subtables (a) - (d) shows the RRs for
each defined α-β-pair as well as for each protocol given in percentages. The best values for each protocol are
marked in bold.
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(a) close (b) medium

(c) far

Figure 5.4: WARTMANN IP SMALL COHORT. This figure including subfigures (a) - (c) shows IP for
various α-β-pairs on the small cohort. The black quads show the range of resulting RRs where α equals the
value on the x-axis and β ∈ [1.25, 3.0].
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Figure 5.5: WARTMANN VP SMALL COHORT. This figure shows VP of the similarity function
Swartmann (2.10). Here α = 1.0 and β = 2.8 for best performance; however, as figure A.3 shows, the
values have a small impact.

5.2.2 Small Cohort
This section compares the methods mentioned in section 2.4.2 using the small cohort of 43 sam-
ples. For the aforementioned similarity functions, the following parameters are used for all con-
secutive experiments to maximize performance for protocol far (i.e., where the effect of low reso-
lution is the most extreme).

• Sschroff (2.7): k = 20 for identification and k = 43 for verification.

• S2013mueller (2.8): λ = 0.90 for identification and λ = 0.99 for verification.

• Swartmann (2.10): α = 1.75, β = 2.25 for identification and α = 1.0, β = 2.8 for verification.

Table 5.5 provides all RRs for each protocol and each comparison method. The last column again
presents the average runtime for each one. Additionally, for comparison, the identification results
of the baseline are given in the last row. Figure 5.6 shows the ROC curves of each method for each
protocol. The results make it clear that

1. by adjusting the parameters, the similarity functions Sschroff (2.7), S2013mueller (2.8) and
Swartmann (2.10) perform best for protocol far regarding IP,

2. for the other protocols, however, weighting and prioritizing ranks is barely superior (i.e.,
the traditional correlation function Sspearman (2.11) performs as one of the best);

3. VP of all similarity functions (except Sw.kendall (2.14) and S2010mueller (2.6)) is very similar
for all protocols;

4. Swartmann (2.10) slightly performs better with specific parameters, but the difference is min-
imal;

5. even though Sspearman (2.11) is implemented in C++, the function’s runtime proves to be
the longest;

6. Sw.kendall (2.14) does not perform better than the unweighted version.
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method RR (%) average runtime (ms)close medium far

S2010mueller (2.6) 48.64 25.45 15.91 707.5514
Sschroff (2.7) 70.00 35.91 16.36 838.1356

S2013mueller (2.8) 70.00 38.64 17.73 1302.4865
Swartmann (2.10) 85.45 47.73 18.18 2143.6471
Sspearman (2.11) 83.64 50.45 12.73 3426.2422
Skendall (2.12) 81.82 48.64 14.55 3271.7671
Sw.kendall (2.14) 68.64 32.73 9.09 1635.2906

baseline 100.00 98.18 74.09 382.3718

Table 5.5: RANK LIST IP SMALL COHORT. This table includes the RRs of all rank list similarity functions
for each protocol given in percentages as well as the average runtime in milliseconds. The best values are
marked in bold.
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(c) similarity functions, far
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(d) correlation functions, close
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(e) correlation functions, medium
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(f) correlation functions, far
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(h) best combined, medium
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Figure 5.6: RANK LIST VP SMALL COHORT. This figure including subfigures (a) - (i) shows VP of all
rank list similarity functions for each protocol on the small cohort. Subfigures (a) - (c) show all similarity
functions, subfigures (d) - (f) all correlation functions and subfigures (g) - (i) combine the best from both.
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5.2.3 Large Cohort
This section presents the results using the large cohort of 86 samples. The values for the param-
eters as mentioned above in section 5.2.2 change as follows again to maximize performance for
protocol far:

• Sschroff (2.7): k = 86 for both identification and verification.

• S2013mueller (2.8): λ = 0.99 for both identification and verification.

• Swartmann (2.10): α = 1.75, β = 2.5 for identification, α = 1.0, β = 2.8 for verification
remains the same.

Table 5.6 again provides the results of IP and figure 5.7 those of VP. The results indicate that

1. in comparison to the small cohort, the similarity functions Sschroff (2.7), S2013mueller (2.8),
Swartmann (2.10) and Sspearman (2.11) perform very similar for all protocols regarding IP
(i.e., weighting and prioritizing ranks is barely superior for any protocol);

2. all functions (except Sw.kendall (2.14) and S2010mueller (2.6)) again generate very similar re-
sults for all protocols regarding VP;

3. Sspearman (2.11) again takes a long time to complete;

4. Skendall (2.12) again proves better performance than the weighted version;

5. when compared to the small cohort, the RRs and ROC curves are more accurate overall,

6. whereas the runtime increases for each similarity function.

method RR (%) average runtime (ms)close medium far

S2010mueller (2.6) 72.73 46.36 17.27 1271.3769
Sschroff (2.7) 97.27 71.36 27.27 1729.9866

S2013mueller (2.8) 97.27 73.64 27.27 2694.7465
Swartmann (2.10) 96.82 72.27 28.64 4309.2037
Sspearman (2.11) 97.27 71.36 27.27 3919.1914
Skendall (2.12) 96.82 72.27 26.82 3740.4091
Sw.kendall (2.14) 84.55 48.18 18.18 2953.2181

baseline 100.00 98.18 74.09 382.3718

Table 5.6: RANK LIST IP LARGE COHORT. This table includes the RRs of all rank list similarity functions
for each protocol given in percentages as well as the average runtime in milliseconds. The best values are
marked in bold.
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(c) similarity functions, far
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(d) correlation functions, close

10 4 10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0
1 

- F
NM

R

baseline
spearman
kendall
weighted_kendall

(e) correlation functions, medium
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(f) correlation functions, far
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(g) best combined, close
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(h) best combined, medium
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Figure 5.7: RANK LIST VP LARGE COHORT. This figure including subfigures (a) - (i) shows VP of all
rank list similarity functions for each protocol on the large cohort. Subfigures (a) - (c) show all similarity
functions, subfigures (d) - (f) all correlation functions and subfigures (g) - (i) combine the best from both.

5.3 Standardization Method
Similarly to section 5.2, the results of the small cohort are separated from those of the large co-
hort for the standardization method. The average preprocessing time pt (i.e. for the methods
standardize (4.1), subtract_mean (4.2) and omitted) is listed below:

preprocessing method small cohort s (ms) large cohort l (ms)

standardize (4.1): std ptsstd = 504.9220 ptlstd = 977.8654
subtract_mean (4.2): sm ptssm = 512.3031 ptlsm = 984.9502

omitted: om ptsom = 525.6306 ptlom = 995.9936

Surprisingly, the measurements for no preprocessing are the longest. There is no obvious expla-
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nation why omitting preprocessing, as described in section A.1.5, does not result in the shortest
time, even though fewer computations are executed.

5.3.1 Minkowski’s Parameter
Figure 5.8 shows how IP decreases or stagnates for higher values. Table 5.7 lists the most inter-
esting p-values, and figure 5.9 depicts the ROC curves. The appendix A.2.2 includes the results
for the large cohort, since here only those of the small cohort are presented for equal reasons as
described in section 5.2.1. The results show that

1. p = 2.0 yields the best VP (no matter the preprocessing method);

2. for protocol far the subtract_mean method (4.2) with minimal difference produces the best IP,

3. otherwise, the standardize method (4.1) is more accurate;

4. values around p = 1.7 show the most precise performance regarding IP.

(a) close (b) medium (c) far

Figure 5.8: MINKOWSKI IP SMALL COHORT. This figure including subfigures (a) - (c) shows IP for
various p-values on the small cohort.
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Figure 5.9: MINKOWSKI VP SMALL COHORT. This figure including subfigures (a) - (c) shows VP of the
similarity function Sminkowski (3.5). Here p = 2.0 for best performance (i.e., same VP as Ssq.euclidean (3.4)),
however as figure A.7 shows, the value has a small impact.
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parameter RR (%)
close medium far

p = 1.3 85.45 49.55 18.18
p = 1.4 87.73 49.55 17.27
p = 1.5 88.64 50.45 16.82
p = 1.6 89.09 51.82 16.82
p = 1.7 89.55 50.91 16.36
p = 1.8 87.73 50.45 15.91
p = 1.9 87.73 50.00 17.27
p = 2.0 88.18 50.00 17.27
p = 2.1 88.64 51.36 18.18
p = 2.2 88.18 50.91 17.73
p = 2.3 87.73 50.00 17.73

(a) standardize

parameter RR (%)
close medium far

p = 1.3 75.00 44.55 17.27
p = 1.4 76.82 44.55 17.73
p = 1.5 77.73 45.00 17.27
p = 1.6 79.55 45.00 17.73
p = 1.7 78.18 45.91 18.18
p = 1.8 78.64 45.45 19.09
p = 1.9 78.64 44.09 19.55
p = 2.0 78.64 44.09 18.64
p = 2.1 78.64 42.73 18.18
p = 2.2 78.18 43.18 18.18
p = 2.3 78.64 43.18 17.27

(b) subtract_mean

parameter RR (%)
close medium far

p = 2.0 67.73 33.18 11.82
p = 2.1 68.18 33.64 11.82
p = 2.2 69.55 35.00 12.27
p = 2.3 69.55 35.45 10.91
p = 2.4 69.55 35.00 10.45
p = 2.5 69.55 35.00 10.91
p = 2.6 69.09 35.00 10.91
p = 2.7 68.64 34.55 10.91
p = 2.8 68.18 34.55 10.91
p = 2.9 67.73 34.55 10.91
p = 3.0 67.73 35.45 10.91
p = 4.2 65.00 29.09 13.64

(c) omitted

Table 5.7: MINKOWSKI IP SMALL COHORT. This table including subtables (a) - (c) shows the RRs for
each defined p and preprocessing method as well as for each protocol given in percentages. The best values
for each protocol are marked in bold.
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5.3.2 Small Cohort
This section compares the methods mentioned in section 3.4 using the small cohort of 43 samples.
Table 5.8 provides all RRs for each protocol and each comparison method with each preprocessing
method. To maximize the IP of protocol far for Sminkowski (3.5),

• p = 2.1 for the standardize preprocessing method (4.1),

• p = 1.9 for the subtract_mean method (4.2),

• and p = 4.2 for no preprocessing.

Figure 5.10 shows the ROC curves of each method for each protocol, including the one from the
baseline. From the results, it is clear that

1. for the omitted preprocessing method, both IP and VP are worse for every distance com-
putation (except Scos (2.3)) when compared to the standardize (4.1) and subtract_mean (4.2)
methods,

2. this is also true for Scanberra (3.2);

3. even though Scos (2.3) takes the longest to execute,

4. it shows very solid performance overall, yielding the same results for both the standard-
ize (4.1) and subtract_mean (4.2) methods;

5. for those preprocessing methods Sbraycurtis (3.1) shows equal VP,

6. whereas all the other distance computations generate different ROC curves;

7. Scityblock (3.3) has the shortest runtime for all preprocessing methods, closely followed by
Ssq.euclidean (3.4) and Sminkowski (3.5);

8. the subtract_mean preprocessing method (4.2) is only best for the protocol far regarding
Ssq.euclidean (3.4) and Sminkowski (3.5),

9. otherwise the standardize method (4.1) proves better results.
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method RR (%) average runtime (ms)close medium far

Scos (2.3) 88.18 50.00 17.27 768.0994
Sbraycurtis (3.1) 83.64 48.18 15.91 610.4427
Scanberra (3.2) 63.18 33.64 12.73 760.6298
Scityblock (3.3) 81.36 48.18 16.82 574.8153

Ssq.euclidean (3.4) 88.18 50.00 17.27 590.9191
Sminkowski (3.5) 88.64 51.36 18.18 596.6574

baseline 100.00 98.18 74.09 382.6218

(a) standardize

method RR (%) average runtime (ms)close medium far

Scos (2.3) 88.18 50.00 17.27 817.9292
Sbraycurtis (3.1) 84.09 48.64 15.00 602.8524
Scanberra (3.2) 63.64 34.09 13.18 771.1784
Scityblock (3.3) 73.64 42.73 15.45 580.9109

Ssq.euclidean (3.4) 78.64 44.09 18.64 596.1222
Sminkowski (3.5) 78.64 44.09 19.55 591.9678

baseline 100.00 98.18 74.09 382.6218

(b) subtract_mean

method RR (%) average runtime (ms)close medium far

Scos (2.3) 78.64 43.64 18.64 844.0956
Sbraycurtis (3.1) 62.73 26.36 6.82 626.2914
Scanberra (3.2) 64.55 28.18 6.36 765.5324
Scityblock (3.3) 63.18 26.82 6.36 576.3784

Ssq.euclidean (3.4) 67.73 33.18 11.82 677.6718
Sminkowski (3.5) 65.00 29.09 13.64 594.4734

baseline 100.00 98.18 74.09 382.6218

(c) omitted

Table 5.8: STANDARDIZATION IP SMALL COHORT. This table including subtables (a) - (c) lists the
RRs of all standardization similarity functions for each protocol given in percentages as well as the average
runtime in milliseconds for each preprocessing method. The best values are marked in bold.
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(b) standardize, medium
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(c) standardize, far
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(d) subtract_mean, close
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(e) subtract_mean, medium
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(f) subtract_mean, far
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(h) omitted, medium
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Figure 5.10: STANDARDIZATION VP SMALL COHORT. This figure including subfigures (a) - (i) shows
VP of all standardization similarity functions for each protocol on the small cohort for each preprocessing
method. Subfigures (a) - (c) show the standardize (4.1), subfigures (d) - (f) the subtract_mean (4.2) and sub-
figures (g) - (i) the omitted processing method. Note that Sminkowski (3.5) is equal to Ssq.euclidean (3.4) and,
therefore, left away.
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5.3.3 Large Cohort
This section presents the results using the large cohort of 86 samples. Again, to maximize the IP
of protocol far for Sminkowski (3.5),

• p = 2.6 for the standardize preprocessing method (4.1),

• p = 1.4 for the subtract_mean method (4.2),

• and p = 4.2 for no preprocessing.

Table 5.9 again provides the results of IP and figure 5.11 those of VP. The results indicate that

1. in comparison to the small cohort, for the omitted preprocessing method, both IP and VP
are now worse for every distance computation (also for Scos (2.3)) when compared to the
standardize (4.1) and subtract_mean (4.2) methods,

2. again this is also true for Scanberra (3.2);

3. Scos (2.3) again takes the longest,

4. but shows very solid performance;

5. the standardize (4.1) method proves the best performance results;

6. Scityblock (3.3) is only fastest for the standardize (4.1) method,

7. otherwise Sminkowski (3.5) proves a very short execution time,

8. directly followed by Ssq.euclidean (3.4);

9. when compared to the small cohort, the RRs and ROC curves are more accurate overall,

10. whereas the runtime increases for each similarity function.
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method RR (%) average runtime (ms)close medium far

Scos (2.3) 97.73 74.55 27.73 1199.9063
Sbraycurtis (3.1) 97.27 71.82 26.36 1087.3100
Scanberra (3.2) 86.36 56.36 16.82 1238.3367
Scityblock (3.3) 97.27 68.64 25.45 1070.965

Ssq.euclidean (3.4) 97.73 74.55 27.73 1076.1242
Sminkowski (3.5) 95.91 72.73 29.55 1042.3849

baseline 100.00 98.18 74.09 382.6218

(a) standardize

method RR (%) average runtime (ms)close medium far

Scos (2.3) 97.73 74.55 27.73 1299.6512
Sbraycurtis (3.1) 97.27 71.82 25.45 1064.4419
Scanberra (3.2) 85.91 57.73 17.27 1237.2778
Scityblock (3.3) 93.18 67.27 27.27 1078.6695

Ssq.euclidean (3.4) 94.55 71.82 26.36 1079.5351
Sminkowski (3.5) 95.00 70.00 29.09 1040.7184

baseline 100.00 98.18 74.09 382.6218

(b) subtract_mean

method RR (%) average runtime (ms)close medium far

Scos (2.3) 94.55 70.91 26.36 1329.5586
Sbraycurtis (3.1) 79.55 40.91 6.36 1075.9546
Scanberra (3.2) 79.55 41.52 6.82 1222.0306
Scityblock (3.3) 78.18 40.00 6.36 1082.0953

Ssq.euclidean (3.4) 83.18 46.36 13.64 1081.1378
Sminkowski (3.5) 81.36 43.64 16.36 1071.235

baseline 100.00 98.18 74.09 382.6218

(c) omitted

Table 5.9: STANDARDIZATION IP LARGE COHORT. This table including subtables (a) - (c) lists the
RRs of all standardization similarity functions for each protocol given in percentages as well as the average
runtime in milliseconds for each preprocessing method. The best values are marked in bold.
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(a) standardize, close
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(c) standardize, far
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(d) subtract_mean, close
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(e) subtract_mean, medium
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(f) subtract_mean, far
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(h) omitted, medium
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Figure 5.11: STANDARDIZATION VP LARGE COHORT. This figure including subfigures (a) - (i) shows
VP of all standardization similarity functions for each protocol on the large cohort for each preprocessing
method. Subfigures (a) - (c) show the standardize (4.1), subfigures (d) - (f) the subtract_mean (4.2) and sub-
figures (g) - (i) the omitted processing method. Note that Sminkowski (3.5) is equal to Ssq.euclidean (3.4) and,
therefore, left away.





Chapter 6

Discussion

First, considering Sschroff (2.7) intuitively, one might think that considering all ranks (i.e., choos-
ing the largest k) should always yield the best results since more data is considered. As mentioned
in section 5.2.1, this is true for the large cohort but not entirely for the small cohort. This behavior
might follow due to the small number of images that, in addition, are of the lowest resolution (i.e.,
protocol far). Therefore, a big part of the features might rather introduce noise than lead to more
accurate performance. In this case, it is beneficial only to consider the most significant ranks and
ignore the rest (i.e., choosing a small k).

S2013mueller (2.8) shows similar behavior. Higher values for λ weight low ranks less than the
lowest λ-value of 0.90. As mentioned in section 5.2.1, once the cohort is big enough, the highest
λ shows the best performance. But when dealing with a limited cohort size of 43 samples, the
lowest λ-value is best. This behavior is consistent with the one of Sschroff (2.7). For protocol far,
the most significant ranks are weighted maximally to exclude higher ranks, which might disrupt
the performance as much as possible.

It follows that weighting ranks like in S2013mueller (2.8) or only considering the most significant
ones like in Sschroff (2.7) is beneficial when dealing with smaller cohort sizes (of very low resolu-
tion) since the parameters can be adjusted. By only considering the most significant ranks, their
performance becomes more accurate than similarity functions which consider all ranks, therefore,
also including noise (e.g., Sspearman (2.11)). On the other hand, with a large cohort, the most sig-
nificant ranks consist of more than just a few, which should all be considered. Hence, the weight
should be reduced and k increased. This is coherent with the results.

In contrast, the weighted version of Kendall’s tau Sw.kendall (2.14) never outperforms Skendall

(2.12). However, this is not necessarily the normal case, as various weighting functions can be
used in Sw.kendall (2.14). The weighting function described in section 2.4.2 does weight low ranks
more than higher ones, however similarly to S2010mueller (2.6) it is not decaying fast enough to
show an advantage over the unweighted version. Applying a weighting function similar to the
one used in S2013mueller (2.8) might yield better performance.

As mentioned in section 5.2.2, Sspearman (2.11) takes a long time to execute compared to the
other functions. Due to its functionality of calculating all differences between the entries of two
lists, this is not surprising. Here, Sschroff (2.7) shows an advantage, as it only includes simple
computations and uses an adjustable parameter. The function stays monotonous to Sspearman

(2.11) but can guarantee a faster execution, which is coherent with the results.
As mentioned in section 4.3, there is a difference in distribution for the lists lp and lg due to

image resolution. Therefore, directly applying distance computations without neutralizing this
difference results in inaccurate performance. The results confirm this assumption since omitting
preprocessing shows the worst performance. Scos (2.3) alone, as listed in sections 5.3.2 and 5.3.3,
is the similarity function not significantly affected by the preprocessing method. Its stability is
given by how the similarity is computed. Since it is represented using the dot product of two
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vectors and their magnitude, the result is normalized and, therefore, not heavily affected by the
difference in preprocessing. On the other hand, the results also indicate that Scos (2.3) is the
slowest in execution. Due to simplicity, the cosine distance provided by SciPy is used; however,
the computation could be manually simplified by first normalizing both vectors (i.e., dividing
them through their corresponding magnitude) and only then calculating the dot product. This
change in execution order guarantees a shorter runtime.

The VP of Sbraycurtis (3.1) remains similar for both preprocessing methods due the same rea-
sons as for Scos (2.3). For each preprocessing method, the divisor remains a normalization factor,
therefore, not affecting the ROC curves.

Scanberra (3.2) shows very interesting results. The similarity function weights low values the
most. When applying the standardize (4.1) and subtract_mean (4.2) preprocessing methods, the
function contrarily weights intermediate values the most since those are now closer to zero. Intu-
itively, the results should be worse than when omitting preprocessing; however, the experiments
show otherwise. There is no obvious explanation for this behavior, and it might indicate that
weighting intermediate values the most yields better performance in general. Further research is
necessary to be certain.

Since the difference between the standardize (4.1) and the subtract_mean (4.2) preprocessing
method only includes a divisor, with which the results are normalized, the performance is ex-
pected to not differ to a large extent. The results are consistent with this assumption; however,
the first method shows slightly better performance overall.

When comparing rank list comparison methods to those of standardization, the best results
for IP and VP are mostly very similar for all protocols and either cohort size. Sminkowski (3.5)
proves the best results for protocol far. It profits from a relatively simple implementation, similar
to Ssq.euclidean (3.4) and, therefore, is expected to have a similar runtime. In addition, the pa-
rameter is adjustable, which enables the performance to be maximized. This is coherent with the
results. Furthermore, significant differences can be seen in all the functions’ runtimes. Distance
computations execute much faster than any of the rank list methods. This difference can be ex-
plained due to the implementation language. The distance computations provided by SciPy are
implemented in C++, whereas the rank list methods are implemented in Python. C++ is the faster
language when it comes to calculations like these. Therefore, it is unclear whether the distance
computations are, in fact, faster than the rank list methods. Tables 6.1 and 6.2, as well as figures 6.1
and 6.2 provide a summarized overview of both methods combined for a better comparison.

method RR (%) average runtime (ms)
close medium far pt excl.

Swartmann (2.10) 85.45 47.73 18.18 2143.6471
Sspearman (2.11) 83.64 50.45 12.73 3426.2422

Scos (2.3) 88.18 50.00 17.27 768.0994
Ssq.euclidean (3.4) 78.64 44.09 18.64 590.9191
Sminkowski (3.5) 78.64 44.09 19.55 596.6574

baseline 100.00 98.18 74.09 382.3718

Table 6.1: BEST IP SMALL COHORT. This table includes the RRs for each protocol given in percentages as
well as the average runtime in milliseconds. The best values are marked in bold. The following adjustments
lead to the best IP for protocol far: for Swartmann (2.10) α = 1.75, β = 2.25; p = 1.9 for Sminkowski (3.5); and
for the standardization method the preprocessing subtract_mean (4.2) is applied.
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Figure 6.1: BEST VP SMALL COHORT. This figure including subfigures (a) - (c) shows VP for each proto-
col on the small cohort. The following adjustments lead to the best VP: for Swartmann (2.10) α = 1.0, β = 2.8;
for S2013mueller (2.8) λ = 0.99; and for the standardization method the preprocessing standardize (4.1) is ap-
plied.

method RR (%) average runtime (ms)
close medium far pt excl.

Swartmann (2.10) 96.82 72.27 28.64 4309.2037
Sspearman (2.11) 97.27 71.36 27.27 3919.1914

Scos (2.3) 97.73 74.55 27.73 1299.6512
Ssq.euclidean (3.4) 97.73 74.55 27.73 1079.5351
Sminkowski (3.5) 95.91 72.73 29.55 1040.7184

baseline 100.00 98.18 74.09 382.3718

Table 6.2: BEST IP LARGE COHORT. This table includes the RRs for each protocol given in percentages as
well as the average runtime in milliseconds. The best values are marked in bold. The following adjustments
lead to the best IP for protocol far: for Swartmann (2.10) α = 1.75, β = 2.5; p = 2.6 for Sminkowski (3.5); and
for the standardization method the preprocessing standardize (4.1) is applied.
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(b) best combined, medium
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Figure 6.2: BEST VP LARGE COHORT. This figure including subfigures (a) - (c) shows VP for each
protocol on the large cohort. The following adjustments lead to the best VP: for Swartmann (2.10) α = 1.0, β =
2.8; for S2013mueller (2.8) λ = 0.99; and for the standardization method the preprocessing standardize (4.1) is
applied.
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As mentioned in sections 5.2.3 and 5.3.3, performance and runtime increase for a larger cohort
size. Due to the more significant number of samples which need to be considered, the increase
in runtime is not surprising. As visible in figure 2.2, the values are expected to follow a standard
normal distribution. The theory of the standard normal distribution for high N states that the
higher the number of values is, the more accurate the distribution becomes. This is coherent
with the results because a larger cohort leads to better performance. However, since it is only an
assumption that the values follow a standard normal distribution, the distribution might show a
skewness instead. Therefore, more accurate results might be achieved by weighting the values
according to their position in the distribution, such that a possible skewness is included.

Even after discussing all the aspects above, the obvious is visible throughout all tables and
figures. The baseline comparison, which directly compares probe with gallery samples, still has
the best IP and VP for all protocols and either cohort size. In addition, the baseline remains the
fastest in execution. This is to be expected as less preprocessing is necessary.

Finally, the results presented are limited by several factors. The first and most straightforward
one is the cohort size. As mentioned, the larger the cohort, the more accurate the performance
becomes. However, the SCface database tailored to the experiments at hand does not support a
cohort more extensive than the 86 samples.

The second factor is presented by the CNN model used for feature extraction. The applied
ArcFace-InsightFace-IResNet100 model generally shows outstanding performance, as shown by
Deng et al. (2019); however, it might not be the best suitable one for low-resolution images.

Last, the SCface database mainly includes male subjects between the ages of 21 and 23, as
mentioned in section 3.1. Due to the small number of female subjects, this might introduce a
particular bias in the results as comparing males with females might return a different similarity
as a male with male or a female with female subject comparison. The same applies to the age
distribution (see figure 3.2) as comparing subjects of older age might return a different similarity
as subjects of younger age or a young with old subject comparison.



Chapter 7

Conclusion

The work at hand aims to set side-by-side various face recognition comparison methods by eval-
uating their performance. For this, the reader is first introduced to face recognition in general.
The recognition process is presented by explaining the various stages completed when running
the recognition task. The idea of using a reference database (i.e., the cohort) is described. Differ-
ent rank list comparison methods introduced by previous researchers are listed. Next, chapter 3
provides information about the tools and software used for running the experiments, followed by
a description of the term baseline and how the rank list and standardization methods are applied
with which the results in chapter 5 are generated.

The results show that for both the standardization and the rank list method, performance con-
tinuously decreases the further away the subject is recorded (i.e., from protocol close to protocol
far). Furthermore, both methods perform worse using the smaller cohort, clearly highlighting the
advantage of a larger cohort. All results distinctly indicate, however, that the usage of a cohort
overall still needs further improvement as the baseline performance remains the best for compar-
ing low-resolution probe with high-resolution gallery images.

Future research should focus on several aspects. For one, results might be further improved
with an even larger cohort. However, how large the cohort must be to reach the baseline’s perfor-
mance is unknown. Theoretically, the results can be extrapolated to estimate the minimum cohort
size after running the experiments with various cohort sizes. Still, the baseline’s performance
might not even be reached with the largest cohort since the approach of using a reference database
might show certain bottlenecks leading to stagnation of performance improvement. Therefore, to
be sure, future research should evaluate larger cohort sizes.

Second, to be able to tell whether the standardization method is genuinely faster than the rank
list method, both functions must be implemented in the same programming language, preferably
C++. Only then can the runtimes be compared efficiently.

Third, the distribution of the computed values should be examined, since it is only assumed,
that it represents a standard normal distribution. In doing so, a possible skewness can either be
excluded or taken into account properly.

Next, as mentioned, the ArcFace-InsightFace-IResNet100 model might not be best for feature
extraction of low-resolution images. Therefore, future research should extract features using var-
ious CNN models, which are then used for comparison and might yield better performance. In a
further step, the best performance might even be reached by using a different model for feature
extraction of the high-resolution images as for features extraction of low-resolution images.

In any case, for meaningful results, future research should focus on generating larger datasets
of low-resolution images. The databases should be made publicly available and should not lack
the real-world settings part as Grgic et al. (2011) mention. In addition, the value of reproducible
studies has to be further communicated by only relying on open-source software and data.





Appendix A

Attachments

A.1 Implementation
This chapter provides a detailed description of the implementation of the experiments. A short
introduction explains the use of a parser and the setup for feature processing. This is followed
by the implementation of the baseline, the rank list method, and the standardization method as
described in section 4. Furthermore, it is described how the code profits from functional program-
ming and, finally, how runtime is measured. The full code is publicly available on GitHub.1

A.1.1 Parser
For user-friendliness, a parser with predefined available choices is configured. The user can
choose amongst all implemented comparison methods (for the rank list and the standardization
method). The program uses predefined categories to easily evaluate whether the chosen one is
a rank list or a standardization comparison method. Furthermore, when running standardiza-
tion comparison methods, the user can choose between the preprocessing methods standardize,
subtract_mean, or omitted. A specific protocol (i.e., close, medium, far) can also be selected. On-
demand, a larger cohort is chosen (i.e., 86 instead of 43 samples), and calculation results such as
the RRs or data files, including the computed scores used for FMR and FNMR, are recorded.

A.1.2 Setup
The setup includes the following steps to retrieve all data needed for the comparison methods.
First, the features are extracted from all images in the SCface database using the ArcFace-Insight-
Face-IResNet100 model and saved in the directory samplewrapper-2/. A database instance is
created for a chosen protocol (i.e., close, medium, or far) from which all probe, gallery, and cohort
samples are extracted. The development sets are used for probe and gallery samples and the
training set for the cohort samples. The cohort is extended with the evaluation sets of the probe
and the gallery images if a larger cohort is desired, as shown in listing A.1.

Next, the path to the extracted features is saved, and using Bob, the features are assigned to the
corresponding samples. For this, the sample key is used, which is concatenated with the HDF5
file extension (see listing A.2).

1https://github.com/maettuu/bob-face-recognition

https://github.com/maettuu/bob-face-recognition
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7 import bob.bio.face

. . .

36 def extract_samples(protocol, enable_larger_cohort):

37 # define database using chosen protocol and extract samples

38 database = bob.bio.face.database.SCFaceDatabase(protocol)

39 probes = database.probes()

40 gallery = database.references()

41 cohort = database.background_model_samples()

42

43 if enable_bigger_cohort:

44 cohort = cohort + \

database.references(group="eval") + \

database.probes(group="eval")

45

46 return probes, gallery, cohort

Listing A.1: Samples Extraction

8 import bob.io.base

9 import pathlib

. . .

24 # determine location of file

25 file_path = str(pathlib.Path().resolve())

26 directory_path = file_path + "/samples_pipe_all/samplewrapper-2/"

. . .

50 def load_features(sample):

51 sample_key = sample.key

52 # add the file extension to key

53 new_sample_key = sample_key + ".h5"

54

55 # load from destination

56 sample_features = bob.io.base.load(directory_path + new_sample_key)

57 sample.features = sample_features

Listing A.2: Assigning Features to Samples

After this step, sample sets are unwrapped in a simple for-loop such that the variables probes,
gallery, and cohort only include separate samples. The setup is now complete, and the samples
are ready to be used. Listing A.3 shows the definition of a sample object with the attributes
important for the experiments (the attributes rank_list and standardized_distances are
added later).

A.1.3 Baseline
As mentioned in section 4.1, the maximum score computed with Scos(u, v) (2.3) is most important
as it represents the highest similarity. The computed similarity scores are first saved in a list. To
report IP, the index of the maximum score is accessed using NumPy’s argmax function. It reveals
the chosen gallery image. If the subject IDs are the same, the match is positive and negative
otherwise. For VP, the list of similarity scores for each probe and all gallery samples is saved in
an external spreadsheet. Bob then takes this spreadsheet to plot ROC curves. Listing A.4 shows
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Sample:

key<string> features<numpyArray>

capture<string> rank_list<numpyArray>

distance<string> standardized_distances<numpyArray>

subject_id<string> ...

Listing A.3: Sample Object

the setup for the described baseline.

A.1.4 Rank List Method
First, the cohort is preprocessed for the rank list method, as mentioned in section 4.2. The
capture attribute is accessed to split the cohort into the probe cohort and the gallery cohort.
It either holds the string mugshot, which stands for high, or the string surveillance, which stands
for low resolution. The distance attribute is accessed for each sample to filter the probe cohort
with the defined protocol as shown in listing A.5. Since subject IDs are used as keys, the usage
of dictionaries enables to easily sort the entries and guarantees equal order for probe and gallery
samples being compared to the respective cohort.

As mentioned in section 4.2, the features for each subject are averaged, such that there is only
one sample per subject in the probe cohort serving as a reference. To calculate the average of
the features, NumPy’s mean method is used on all the feature vectors which belong to the same
subject (i.e., with the equal subject_id attribute). This process is shown in listing A.6.

Once all cosine distances are computed and saved in a list, as described in section 4.2, the rank
list can be generated. This is done by converting the cosine distances using NumPy’s argsort
method as shown in listing A.7. It is applied twice, since the first time, the list is only converted
into a list of pointers, where each value indicates at what index the corresponding ranked distance
is saved. To generate a rank list, argsort is used a second time on this list of pointers.

Finally, listing A.8 uses all functions mentioned above and shows the entire preprocessing
procedure of the cohort and the samples for the rank list method.

After this step, the probe and gallery samples are ready to be used for the different compari-
son methods (see section 2.4.2). The methods are applied using functional programming further
described in section A.1.6 below.
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8 import numpy as np

9 import scipy.spatial

. . .

43 def baseline(probe_sample, gallery_samples):

44 # instantiate list for calculated cosine distances

45 cosine_distances = []

46

47 for gallery_sample in gallery_samples:

48 # calculate and save cosine distance between probe and current gallery sample

49 cosine_distance = scipy.spatial.distance.cosine(

probe_sample.features, gallery_sample.features

)

50 cosine_distances.append(cosine_distance)

51

52 data = [probe_sample.reference_id, probe_sample.subject_id,

53 gallery_sample.reference_id, gallery_sample.subject_id,

54 -cosine_distance]

55 # save to external spreadsheet to determine VP

56 save_scores(data)

57

58 # negate list to return cosine similarity

59 return -np.array(cosine_distances)

60

. . .

218 def get_match_result(probe_sample, gallery_sample):

219 # return 1 for positive matches (if the subject_ids are the same)

220 if probe_sample.subject_id == gallery_sample.subject_id:

221 return 1

222

223 return 0

. . .

241 positive_matches = 0

. . .

247 for probe_sample in probe_samples:

248 result = baseline(probe_sample, gallery_samples)

249 # find maximum score and compare IDs for IP

250 max_score_index = np.argmax(result)

251 positive_matches += get_match_result(probe_sample, gallery_samples[max_score_index])

Listing A.4: Baseline Comparison
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90 def split_cohort(cohort_samples, protocol):

91 # instantiate dictionaries for probe and gallery cohort samples

92 cohort_probes = {}

93 cohort_gallery = {}

94

95 for sample in cohort_samples:

96 # extract the ’capture’ attribute

97 curr_capture = sample.capture

98

99 # check capture to distinguish between probe and gallery cohort

100 if str(curr_capture) == ’surveillance’:

101 # check for the protocol used when defining the database

102 if str(sample.distance) == protocol:

103 curr_subject_id = sample.subject_id

104 # add an entry if subject_id is not yet in the dictionary

105 if curr_subject_id not in cohort_probes:

106 cohort_probes[curr_subject_id] = [sample.features]

107 # else extract already recorded features and add current ones

108 else:

109 cohort_probes.get(curr_subject_id).append(sample.features)

110 elif str(curr_capture) == ’mugshot’:

111 cohort_gallery[sample.subject_id] = sample.features

112

113 return cohort_probes, cohort_gallery

Listing A.5: Splitting and Filtering of Cohort

9 import numpy as np

. . .

117 def calculate_average(cohort_probes):

118 # instantiate dictionary for subjects w/ averaged features

119 averaged_features = {}

120

121 for subject_id, features in cohort_probes.items():

122 # calculate the average of all features

123 curr_average_features = np.mean(features, axis=0)

124 # add average to the dictionary

125 averaged_features[subject_id] = curr_average_features

126

127 return averaged_features

Listing A.6: Compute Average of Features
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10 import scipy.spatial

. . .

132 def get_cosine_distances(sample, cohort_samples):

133 # instantiate list for calculated cosine distances

134 cosine_distances = []

135

136 # sort keys to guarantee equal order

137 for key in sorted(cohort_samples.keys()):

138 # calculate and save cosine distance

139 cosine_distances.append(

140 scipy.spatial.distance.cosine(sample.features, cohort_samples[key])

141 )

142

143 return np.array(cosine_distances)

144

145

146 def generate_rank_list(samples, cohort_samples):

147 for sample in samples:

148 cosine_distances = get_cosine_distances(sample, cohort_samples)

149 # use argsort to convert into an array of orders

150 order = np.argsort(cosine_distances)

151 # use argsort again to convert into a rank list and add it to sample

152 sample.rank_list = np.argsort(order)

Listing A.7: Rank List Generation

204 cohort_probes, cohort_gallery = split_cohort(cohort, protocol)

205 cohort_probes_averaged = calculate_average(cohort_probes)

206

207 # usage of rank lists -> generate rank lists

208 if category == "rank-list-comparison":

209 generate_rank_list(probe_samples, cohort_probes_averaged)

210 generate_rank_list(gallery_samples, cohort_gallery)

Listing A.8: Rank List Method Preprocessing



A.1 Implementation 53

156 def standardize(samples, cohort_samples):

157 for sample in samples:

158 cosine_distances = get_cosine_distances(sample, cohort_samples)

159 # subtract the mean from the list and divide by the standard deviation

160 sample.standardized_distances = np.divide(

161 np.subtract(cosine_distances, np.mean(cosine_distances)),

162 np.std(cosine_distances)

163 )

164

165

166 def subtract_mean(samples, cohort_samples):

167 for sample in samples:

168 cosine_distances = get_cosine_distances(sample, cohort_samples)

169 # subtract mean from list

170 sample.standardized_distances = np.subtract(

171 cosine_distances, np.mean(cosine_distances)

172 )

173

174

175 def omitted(samples, cohort_samples):

176 for sample in samples:

177 cosine_distances = get_cosine_distances(sample, cohort_samples)

178 # directly assign without standardization

179 sample.standardized_distances = cosine_distances

Listing A.9: Standardized Lists

A.1.5 Standardization Method
Since the standardization method also uses the cohort, the steps shown in listings A.5 and A.6
are applied first. However, after computing the cosine distances, the lists are preprocessed de-
pending on the user’s choice as shown in listing A.9. Either the methods standardize (4.1) or sub-
tract_mean (4.2) are applied, or the step is omitted altogether. The entire preprocessing procedure
is described in listing A.10.

The following section explains how Python’s eval method is used to call the preprocessing
method chosen by the user. After preprocessing, the probe and gallery samples are ready to be
used for the distance computations listed in section 3.4. Again functional programming is applied
to select the functions’ computations.
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204 cohort_probes, cohort_gallery = split_cohort(cohort, protocol)

205 cohort_probes_averaged = calculate_average(cohort_probes)

. . .

222 # usage of lists w/o converting to rank -> standardize lists

223 elif category == "standardization_comparison":

224 standardization_function = eval(standardization_method)

225 standardization_function(probe_samples, cohort_probes_averaged)

226 standardization_function(gallery_samples, cohort_gallery)

Listing A.10: Standardization Method Preprocessing

A.1.6 Dynamic Execution

By default, the program runs all comparison methods for all protocols. To follow the principles
of good code structure, duplicated lines of code are prevented. This is achieved using Python’s
eval method on the specified comparison method. In general, this Python method poses some
security risks. However, since the comparison methods available are given as choices for the
parser, the user is not able to input anything other than what is predefined, therefore guaranteeing
a successful execution. Since each comparison method has a corresponding function, the two
are dynamically linked without additional code. This approach is applied equally to the user’s
choice of preprocessing for the standardization method. Listing A.11 shows an example for the
similarity function S2010mueller(π, γ) (2.6). Note that the normalization factor is removed since
only the highest score is necessary (i.e., the highest score remains highest after normalization).
The code has a function just like this for every comparison method. Again, the positive matches
are recorded for IP, and all score results are saved in an external spreadsheet used by Bob for VP.

A.1.7 Runtime

Execution time is measured running the terminal only, with no running background tasks. For
this, an Intel(R) Core(TM) i7-8650U CPU at a rate of 1.90GHz is used.

Measurements are taken using the process_time() function provided by Python’s time
module2. The first measurement includes the time for preprocessing (i.e., the time it takes for gen-
erating the rank and standardized lists). It is measured separately because the baseline does not
have to preprocess and use the cohort. The second measurement is started after the preprocessing
steps described in sections A.1.2-A.1.5 before the program starts computing similarity scores for
each probe and all gallery samples. It is stopped after the last comparison before computing the
RR. This guarantees the measurement to include the comparison process only.

It follows that for the rank list and the standardization method, the two measurements are
added to determine the total runtime. In contrast, for the baseline, only the second measurement
is relevant. By default, all protocols are executed for one comparison method, so those runtime
measurements are averaged. However, if a specific protocol is chosen, the corresponding runtime
is returned directly.

2https://docs.python.org/3/library/time.html, retrieved 14 July, 2022

https://docs.python.org/3/library/time.html
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7 import math

comparison_method = "mueller2010"

. . .

68 def mueller2010(probe_sample, gallery_sample):

69 # initialize score

70 similarity_score = 0

71 # create a list of tuples including both ranks at the same index

72 rank_tuples = zip(probe_sample.rank_list, gallery_sample.rank_list)

73 # loop through rank lists and compute similarity

74 for probe_rank, gallery_rank in rank_tuples:

75 similarity_score += 1 / math.sqrt(probe_rank + gallery_rank + 1)

76

77 return similarity_score

78

. . .

198 def get_similarity_scores(probe_sample, gallery_samples, comparison_function):

199 # instantiate list for calculated similarity scores between

200 # probe sample rank list and all gallery sample rank lists

201 similarity_scores = []

202

203 for gallery_sample in gallery_samples:

204 similarity_score = comparison_function(probe_sample, gallery_sample)

205 # append the score to the list

206 similarity_scores.append(similarity_score)

207

208 data = [probe_sample.reference_id, probe_sample.subject_id,

209 gallery_sample.reference_id, gallery_sample.subject_id,

210 similarity_score]

211 # save to external spreadsheet to determine VP

212 save_scores(data)

213

214 return np.array(similarity_scores)

215

. . .

238 comparison_function = eval(comparison_method)

. . .

253 for probe_sample in probe_samples:

254 result = get_similarity_scores(probe_sample, gallery_samples, comparison_function)

255 # find maximum score and compare IDs for IP

256 max_score_index = np.argmax(result)

257 positive_matches += get_match_result(probe_sample, gallery_samples[max_score_index])

Listing A.11: Dynamic Comparison Method
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A.2 Additional Results for Different Parameters

A.2.1 Schroff’s, Müller’s & Wartmann’s Parameters
Schroff

For the large cohort, which includes 86 samples, values k ∈ {20, 40, 60, 86} are presented to show
a gradual increase. Table A.1 summarizes IP. Figure A.1 shows VP for each protocol.

parameter RR (%)
close medium far

k = 20 73.18 44.09 14.55
k = 40 91.82 65.45 19.09
k = 60 96.36 71.82 23.64
k = 86 97.28 71.36 27.27

Table A.1: SCHROFF IP LARGE COHORT. This table shows the RRs for each defined k as well as for each
protocol given in percentages using the large cohort. The best values for each protocol are marked in bold.

10 4 10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1 
- F

NM
R

k=20
k=40
k=60
k=86

(a) close

10 4 10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1 
- F

NM
R

k=20
k=40
k=60
k=86

(b) medium

10 4 10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1 
- F

NM
R

k=20
k=40
k=60
k=86

(c) far

Figure A.1: SCHROFF VP LARGE COHORT. This figure including subfigures (a) - (c) shows VP of the
similarity function Sschroff (2.7) for each protocol on the large cohort.
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Müller 2013

For the large cohort, the values λ ∈ {0.90, 0.95, 0.99} are presented in table A.2 and figure A.2 to
show a gradual increase.

parameter RR (%)
close medium far

λ = 0.90 76.82 45.91 16.82
λ = 0.95 92.27 65.45 20.91
λ = 0.99 97.27 73.64 27.27

Table A.2: MÜLLER 2013 IP LARGE COHORT. This table shows the RRs for each defined λ as well as
for each protocol given in percentages using the large cohort. The best values for each protocol are marked
in bold.
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Figure A.2: MÜLLER 2013 VP LARGE COHORT. This figure including subfigures (a) - (c) shows VP of
the similarity function S2013mueller (2.8) for each protocol using a different parameter λ on the large cohort.
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Wartmann
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Figure A.3: ADDITIONAL WARTMANN VP SMALL COHORT. This figure including subfigures (a) - (i)
shows VP of the similarity function Swartmann (2.10) for various α-β-pairs. When increasing both parameters
simultaneously, solely α = 1.25 and β = 2.0 shows a considerable difference, however the performance is
practically equal to that of α = 1.0 and β = 1.0.
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(a) close (b) medium

(c) far

Figure A.4: WARTMANN IP LARGE COHORT. This figure including subfigures (a) - (c) shows IP for
various α-β-pairs on the large cohort. The black quads show the range of resulting RRs where α equals the
value on the x-axis and β ∈ [1.25, 3.0].
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parameter RR (%)
close medium far

α = 1.0, β = 1.0 97.27 72.27 27.27
α = 1.1, β = 1.0 97.27 71.82 27.27
α = 1.2, β = 1.0 97.27 71.82 26.36
α = 1.3, β = 1.0 97.27 71.36 26.36
α = 1.4, β = 1.0 97.27 71.82 25.45
α = 1.5, β = 1.0 97.27 71.36 25.00
α = 1.6, β = 1.0 97.73 71.82 25.00
α = 1.7, β = 1.0 97.73 72.73 25.00
α = 1.8, β = 1.0 97.27 72.27 25.45
α = 1.9, β = 1.0 97.27 71.36 25.91
α = 2.0, β = 1.0 97.27 71.36 25.45

(a) increasing α

parameter RR (%)
close medium far

α = 1.0, β = 1.1 97.27 72.27 26.36
α = 1.0, β = 1.2 97.27 72.27 26.82
α = 1.0, β = 1.3 97.27 72.27 26.82
α = 1.0, β = 1.4 97.73 72.27 27.27
α = 1.0, β = 1.5 97.73 72.27 27.27
α = 1.0, β = 1.6 97.73 71.82 27.27
α = 1.0, β = 1.7 97.73 71.82 27.27
α = 1.0, β = 1.8 97.73 71.82 26.82
α = 1.0, β = 1.9 97.73 72.27 26.82
α = 1.0, β = 2.0 97.73 71.82 26.82
α = 1.0, β = 2.1 97.73 71.82 27.27

(b) increasing β

parameter RR (%)
close medium far

α = 1.2, β = 1.2 97.27 71.82 26.36
α = 1.3, β = 1.3 97.27 71.82 26.36
α = 1.4, β = 1.4 96.82 71.36 25.45
α = 1.5, β = 1.5 96.82 71.82 25.91
α = 1.6, β = 1.6 96.82 71.82 26.36
α = 1.7, β = 1.7 96.82 71.82 25.91
α = 1.8, β = 1.8 96.82 71.82 25.91
α = 1.9, β = 1.9 96.82 70.91 26.82
α = 2.0, β = 2.0 97.27 70.91 27.27
α = 2.1, β = 2.1 96.82 70.00 27.27
α = 2.2, β = 2.2 96.36 69.55 28.18

(c) increasing both

parameter RR (%)
close medium far

α = 1.25, β = 2.50 97.27 72.73 26.82
α = 1.25, β = 2.75 96.82 73.64 27.27
α = 1.25, β = 3.00 96.82 72.73 26.82
α = 1.75, β = 2.25 96.36 71.82 27.73
α = 1.75, β = 2.50 96.82 72.27 28.64
α = 1.75, β = 2.75 96.36 71.82 28.18
α = 1.75, β = 3.00 96.36 71.82 27.27
α = 2.00, β = 1.75 97.27 70.91 26.36
α = 2.00, β = 2.25 96.36 70.45 28.18
α = 2.00, β = 2.50 95.91 70.45 28.18
α = 2.00, β = 2.75 96.36 70.00 28.64

(d) various α-β-pairs

Table A.3: WARTMANN IP LARGE COHORT. This table including subtables (a) - (d) shows the RRs for
each defined α-β-pair as well as for each protocol given in percentages. The best values for each protocol are
marked in bold.
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Figure A.5: WARTMANN VP LARGE COHORT. This figure shows VP of the similarity function
Swartmann (2.10). Here α = 1.0 and β = 2.8 for best performance; however, as figure A.6 shows, the
values have a small impact on overall performance.
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(c) increasing α far
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Figure A.6: ADDITIONAL WARTMANN VP LARGE COHORT. This figure including subfigures (a) - (i)
shows VP of the similarity function Swartmann (2.10) for various α-β-pairs on the large cohort.
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A.2.2 Minkowski’s Parameter
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Figure A.7: ADDITIONAL MINKOWSKI VP SMALL COHORT. This figure including subfigures (a) - (i)
shows VP of the similarity function Sminkowski (3.5) for various p-values and preprocessing methods on the
small cohort.
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(a) close (b) medium (c) far

Figure A.8: MINKOWSKI IP LARGE COHORT. This figure including subfigures (a) - (c) shows IP for
various p-values on the large cohort.
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Figure A.9: MINKOWSKI VP LARGE COHORT. This figure including subfigures (a) - (c) shows VP of the
similarity function Sminkowski (3.5). Here p = 2.0 for best performance (i.e., same VP as Ssq.euclidean (3.4)),
however as figure A.10 shows, the value has a small impact.
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parameter RR (%)
close medium far

p = 2.0 97.73 74.55 27.73
p = 2.1 97.27 73.18 28.18
p = 2.2 96.82 72.27 28.64
p = 2.3 96.82 72.73 28.64
p = 2.4 96.36 72.73 28.64
p = 2.5 96.36 72.27 28.18
p = 2.6 95.91 72.73 29.55
p = 2.7 95.45 72.73 29.55
p = 2.8 95.45 73.18 29.09
p = 2.9 95.00 73.18 29.09
p = 3.0 94.09 72.73 28.18

(a) standardize

parameter RR (%)
close medium far

p = 1.2 94.55 69.09 28.64
p = 1.3 94.55 69.55 28.18
p = 1.4 95.00 70.00 29.09
p = 1.5 94.55 69.55 28.64
p = 1.6 94.55 70.00 27.27
p = 1.7 94.55 70.91 28.18
p = 1.8 94.55 71.36 27.73
p = 1.9 95.00 71.82 26.82
p = 2.0 94.55 71.82 26.36
p = 2.1 94.55 70.45 25.91
p = 2.2 94.55 70.00 26.36

(b) subtract_mean

parameter RR (%)
close medium far

p = 2.2 83.18 47.27 13.64
p = 2.3 83.18 46.82 13.18
p = 2.4 83.64 46.82 13.18
p = 2.5 83.64 47.27 13.64
p = 2.6 83.64 47.27 15.00
p = 2.7 83.18 47.27 15.00
p = 2.8 83.64 47.27 14.55
p = 2.9 83.64 47.27 14.55
p = 3.0 83.64 46.82 14.55
p = 3.1 83.64 46.82 14.55
p = 3.2 83.18 46.82 14.55
p = 4.2 81.36 43.64 16.36

(c) omitted

Table A.4: MINKOWSKI IP LARGE COHORT. This table including subtables (a) - (c) shows the RRs for
each defined p as well as for each protocol given in percentages. The best values for each protocol are marked
in bold.
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Figure A.10: ADDITIONAL MINKOWSKI VP LARGE COHORT. This figure including subfigures (a) - (i)
shows VP of the similarity function Sminkowski (3.5) for various p-values and preprocessing methods on the
large cohort.
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